



## 6<sup>th</sup> ANNUAL UC COURSE

Emerging personalized therapies for the  
management of urothelial carcinomas

## VI CURSO ANUAL DE UC

Terapias personalizadas emergentes  
en el manejo del carcinoma urotelial

# Retos en el manejo del CVNMI, ¿a qué deberíamos dar respuesta?

Félix Guerrero Ramos

Hospital Universitario 12 de Octubre

Madrid



# CONFLICTOS DE INTERÉS

|                                  |                                                                                                                                  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <b>Research support/PI</b>       | Johnson & Johnson, Pfizer, Taris, BMS, Roche, Seagen, AstraZeneca, Combat Medical, Cepheid, Fidia, Astellas, UroGen, MSD, enGene |
| <b>Employee</b>                  | SERMAS (Servicio Madrileño de Salud)                                                                                             |
| <b>Consultant</b>                | Johnson & Johnson, Pfizer, Merck, Roche, Taris, Combat Medical, AstraZeneca, MSD, BMS, enGene, Nanobots Therapeutics             |
| <b>Stockholder</b>               | CG Oncology, Johnson & Johnson, Pfizer                                                                                           |
| <b>Speaker bureau</b>            | Janssen, Nucleix, MSD, Pfizer, Merck, BMS, AstraZeneca, Palex, Combat Medical, Johnson & Johnson, Recordati                      |
| <b>Travel</b>                    | Pfizer, Recordati, Ipsen, Combat Medical, Alter, Salvat, Nucleix, AstraZeneca, Fidia, Johnson & Johnson                          |
| <b>Scientific advisory board</b> | AstraZeneca, BMS, Combat Medical, Johnson & Johnson, Nucleix, Pfizer, Taris, Roche, MSD, enGene                                  |
| <b>Manuscript support</b>        | Pfizer, Janssen, Combat Medical, AstraZeneca, Johnson & Johnson, BMS                                                             |



# Areas for improvement in NMIBC

Diagnosis

Screening, novel biomarkers, enhanced endoscopic visualization, functional imaging

Follow-up

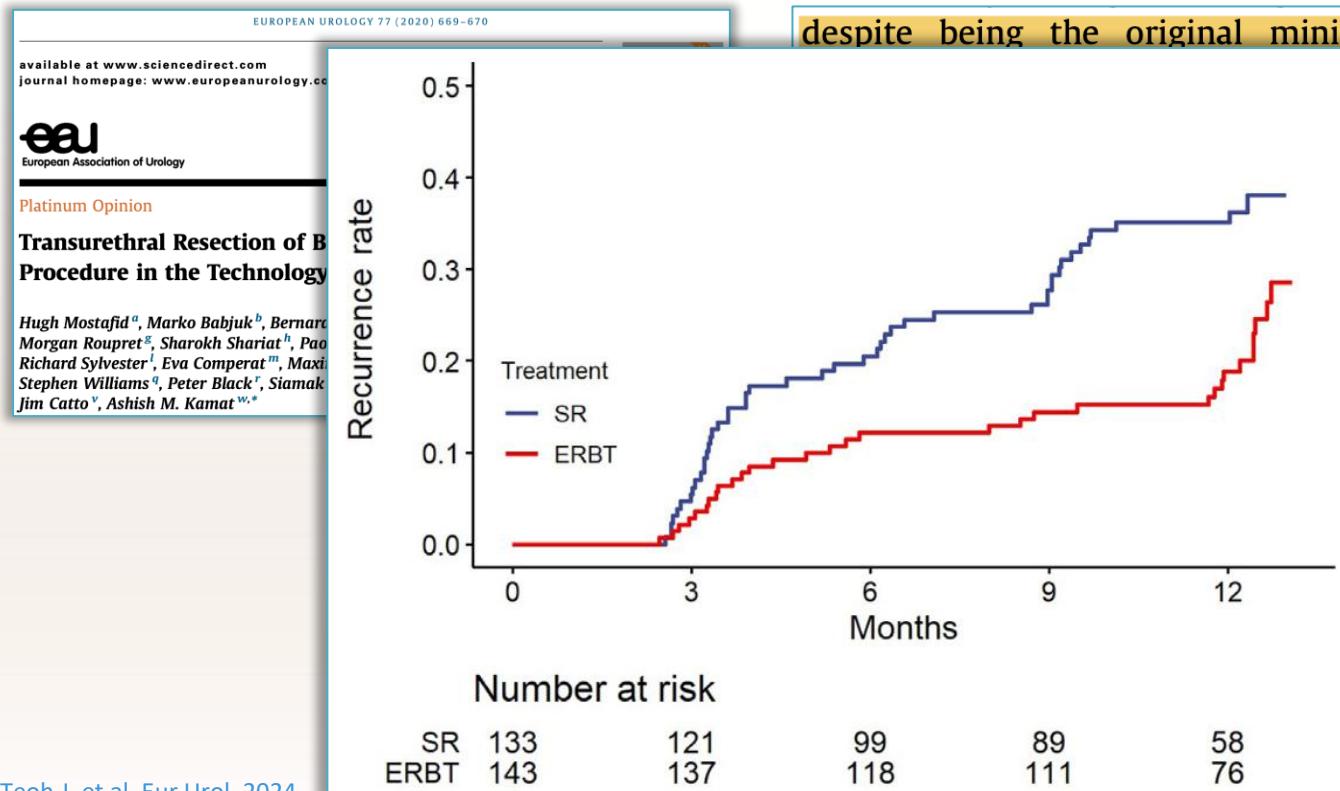
Improved risk stratification, novel biomarkers, more tailored follow-up, cost

TURBT

Blue light cystoscopy, bladder mapping, en bloc, TURBT avoidance

Cystectomy

Robotic, fast-track protocols, complication rate, cystectomy avoidance


Recurrence

Decrease not only rates, but also time to event

Progression



# TURBT: the neglected procedure?



in improving surgical C needs to be explored. operation familiar to all is therefore practiced but a focused interest in ng is the historical lack ipment manufacturers.



# Current treatment landscape

## EAU Risk Group: Intermediate

In general, chemotherapy (the optimal schedule is unknown) is a reasonable first-line option in the majority of patients. One-year full-dose BCG treatment (induction plus three-weekly instillations at 3, 6 and 12 months), is an alternative option. The final choice should reflect the individual patient's risk of recurrence and progression as well as the efficacy and side effects of each treatment modality. Offer one immediate chemotherapy instillation to patients with small papillary recurrences detected more than one year after previous TURB.

Strong

## EAU risk group: High

Offer intravesical full-dose instillations for one to three years but discuss immediate radical cystectomy (RC).

Strong

## EAU risk group: Very High

Offer RC or intravesical full-dose BCG instillations for one to three years, particularly to those who decline or are unfit for RC.

Strong

A. MORALES,\* D. EIDINGER AND A. W. BRUCE

From the Departments of Urology, and Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada

### ABSTRACT

Patients with recurrent superficial bladder tumors have been treated by vesical and intradermal administration of *Bacillus Calmette-Guerin*. The pattern of recurrence in 9 patients has been altered favorably. Although the findings are still preliminary they appear to hold promise of a new therapeutic approach to the treatment of a group of neoplasms for which effective therapy is still lacking.

Instillation of oncolytic agents has been used for many years in the treatment and prophylaxis of superficial bladder tumor recurrences with variable success.<sup>1-3</sup> The location and natural history of these neoplasms and the easy accessibility of the bladder make this type of therapy particularly attractive.

The antigenicity of bladder tumors has been demonstrated repeatedly.<sup>4-6</sup> This would suggest that immunotherapy may be useful in the eradication of non-invasive bladder neoplasms. Successful *Bacillus Calmette-Guerin* (BCG) immunotherapy must meet several criteria: 1) ability to develop an immune response to mycobacteria antigens, 2) adequate numbers of living bacilli, 3) close contact between BCG and tumor, 4) relative immunologic ignorance (i.e., freedom from major systemic side effects).<sup>7</sup> Superficial bladder tumors appear to be ideally suited to this approach. The results presented summarize our initial experience with the use of BCG in the treatment and prophylaxis of these neoplasms.

### MATERIALS AND METHODS

There were 2 groups of patients considered candidates for BCG immunotherapy. In group 1 were patients with a history of persistent tumor recurrences but in whom all gross evidence of cancer was eliminated by endoscopic fulguration prior to the onset of immunotherapy. In group 2 were patients with tumor recurrence in whom complete endoscopic eradication of the neoplasm was not achieved. In every case the tumor was histologically and histologically staged and considered to be superficial ( $T_1$  to  $T_2$ ).

Immunological evaluation was performed *in vivo* and *in vitro*. *In vivo* studies consisted of the determination of delayed cutaneous hypersensitivity to a battery of recall antigens: tuberculin, histoplasmin, dermatophytin and streptokinase-streptodornase. *In vitro* studies included absolute peripheral lymphocyte counts and determination of T and B subpopulations as previously described.<sup>8</sup>

*BCG administration.* The vaccine was given *in vivo* and *in vitro*. *In vivo* studies consisted of the determination of delayed cutaneous hypersensitivity to a battery of recall antigens: tuberculin, histoplasmin, dermatophytin and streptokinase-streptodornase. *In vitro* studies included absolute peripheral lymphocyte counts and determination of T and B subpopulations as previously described.<sup>8</sup>

*Accepted for publication October 31, 1975.*  
Supported by the Ontario Cancer Foundation Grant 292.  
Requests for reprints: Etherington Hall, Queen's University, Kingston, Ontario, Canada.

\*Current address: Laboratory of Immunodiagnosis, Building 8, Room 118, National Institutes of Health, Bethesda, Maryland 20014.

Four to 6 weeks after the last immunization cystoscopy was performed. Any areas suggesting the presence of tumor were biopsied, otherwise random samples were taken. Recheck cystoscopies were performed periodically thereafter.

### RESULTS

*Delayed cutaneous hypersensitivity.* All patients exhibited a cutaneous reaction to mycobacteria antigens. In 4 cases the administration of tuberculin caused no reaction but strong reactivity was obtained 3 weeks after administration of BCG. Response to other recall antigens was found in 6 patients, the most common being to streptokinase-streptodornase. All patients tested with dinitrochlorobenzene showed reactivity to this antigen.

*Quantitative lymphocyte studies.* The mean numbers of absolute peripheral lymphocytes and the T and B subpopulations are illustrated in figure 1. The initial values are not different from the ones found in normal subjects. This finding may well reflect the limited tumor load. Although an increase in lymphocyte populations was noted after the onset of therapy the values lack statistical significance.

*Recurrence rate.* The number of recurrences found in the 12-month period immediately before BCG therapy and during the post-vaccination period is illustrated in table 1. Before therapy 9 patients demonstrated a total of 22 recurrences during 77 patient months. After vaccination these 9 patients yielded 1 recurrence during a followup of 41 patient months. However, these 2 total distributions do not permit a valid statistical analysis. On the other hand, looking at 5 cases in which the pre-BCG and post-BCG periods were identical (25 patient months), 12 recurrences were found in 12 patient months during the pre-BCG period, while after immunotherapy no recurrences were present. With the chi-square test in these 5 patients for the pre-BCG versus the post-BCG periods, a statistically significant difference was obtained ( $p$  less than 0.01).

Of the 9 patients who have now received BCG immunotherapy 5 were treated for prevention of recurrence and 4 for residual tumor.

### CASE REPORTS

*Case 1.* An 80-year-old man was found to have a transitional cell carcinoma of the bladder in 1970. Elimination of tumor was achieved by endoscopic fulguration but recurred every 3 to 4 months despite treatment with BCG. In June 1974 a course of intradermal and intravesical BCG was decided upon after conversion to purified protein derivative positivity by intradermal injection of BCG. It was well tolerated although the patient experienced fever, malaise and dysuria for 48 to 72 hours after the vaccination. After immunotherapy no recurrences have been detected endoscopically and random biopsies



# Medical therapy: the endpoint challenge

Recurrence-free survival

Disease-free survival

Safety

Low-grade vs  
high-grade

Event-free survival

Tolerability

Cancer-specific  
survival

Progression-free survival

Bl event-free survival

QoL

Overall  
survival

Cystectomy-free survival

Complete response

Duration of  
the response



# Another challenge... how to assess the response?

Cystoscopy

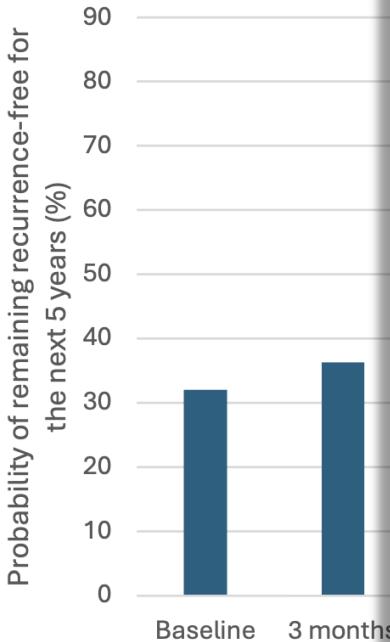
CT-scan/MRI

Cytology

PET-scan?

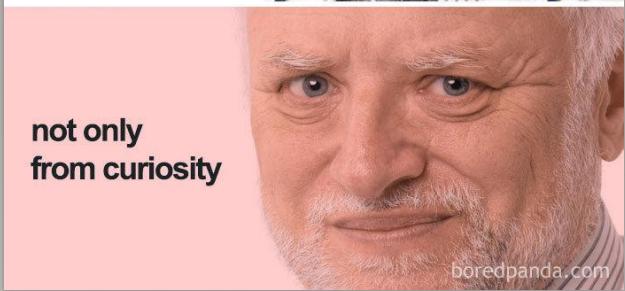
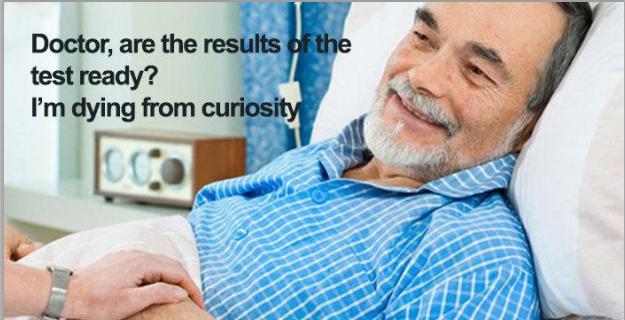
Biopsies

Biomarkers?


HOW???

What else?




# NMIBC: the challenge of defining CURE



## Conclusions

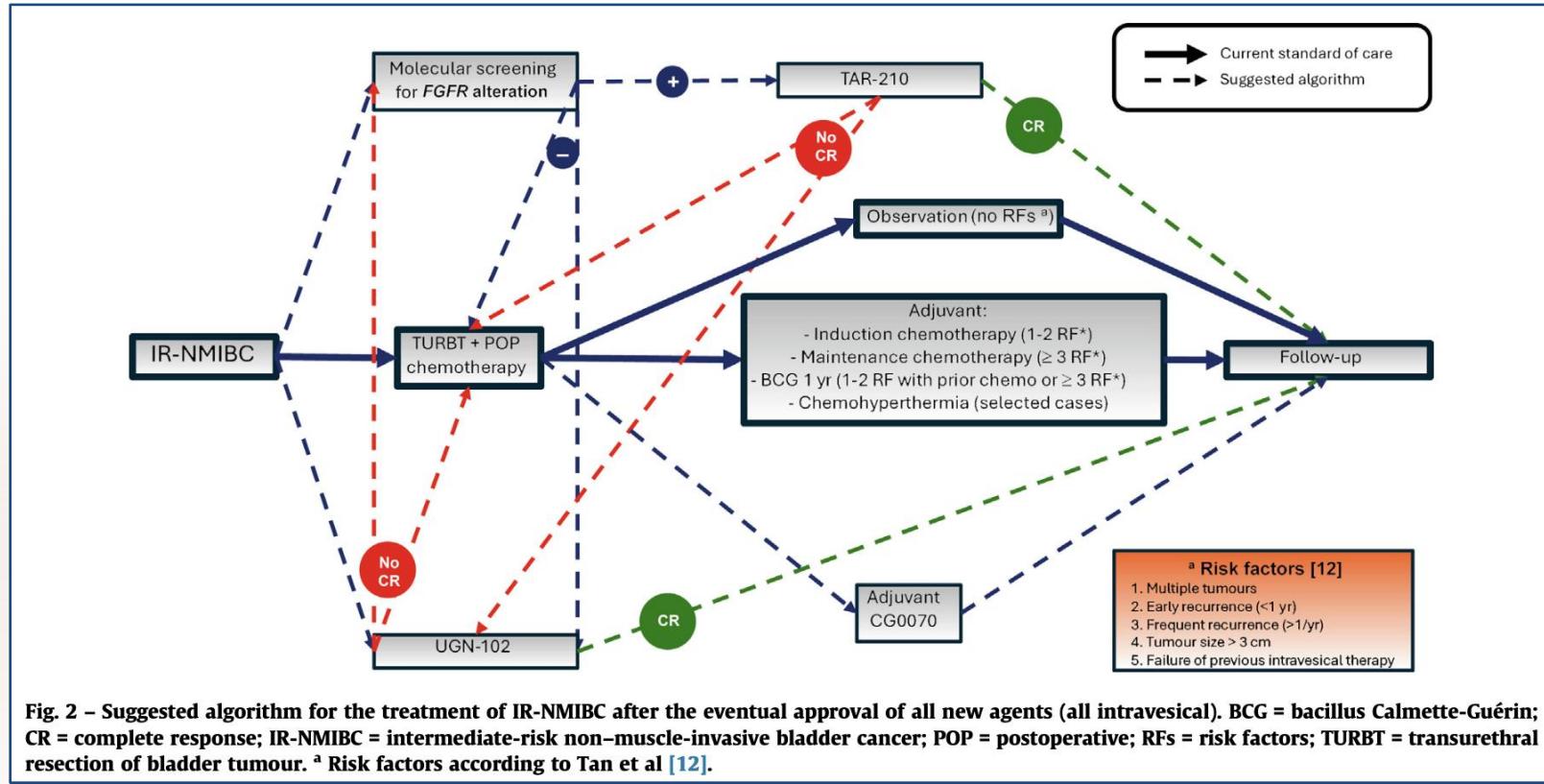
The evidence reviewed in this manuscript indicates that **consensus on what constitutes cure and curative intent in early bladder cancer remains to be established**. Such consensus would support the development of clinical trial designs that adequately capture cure endpoints and inform healthcare decision-making, both from a clinician-patient and reimbursement perspective. Based on established cure endpoints in other oncology indications, **we propose 5-year RFS as a potential cure definition in early bladder cancer**. RWE indicates that this endpoint would be feasible, with 5-year RFS being regularly reported.



### Intermediate risk

- Improved RFS (and PFS): **adjuvant** approaches
- Avoid TURBTs: **ablative** approaches
- Longer times to recurrence: **both** approaches

### High risk


- Improved HG-RFS and PFS
- Minimize toxicity
- Avoid radical cystectomy

### BCG unresponsive

- AVOID RADICAL CYSTECTOMY (SoC)...
- ... without compromising survival
- **IMPORTANT: CIS vs papillary-only**



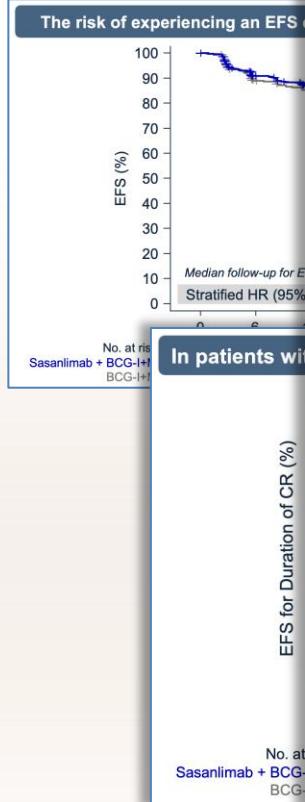
# Intermediate-risk



**Fig. 2 – Suggested algorithm for the treatment of IR-NMIBC after the eventual approval of all new agents (all intravesical). BCG = bacillus Calmette-Guérin; CR = complete response; IR-NMIBC = intermediate-risk non-muscle-invasive bladder cancer; POP = postoperative; RFs = risk factors; TURBT = transurethral resection of bladder tumour. <sup>a</sup> Risk factors according to Tan et al [12].**



# High-risk


**Table 1 – Comparative designs of the largest trials assessing novel agents in BCG-naïve high-risk non-muscle invasive bladder cancer**

| Study title          | POTOMAC                                             | ALBAN                                     | KEYNOTE-676 (cohort B)                                                    | CREST                                   | SunRISe-3                                      | BRIDGE                            |
|----------------------|-----------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------|
| Study ID             | NCT03528694                                         | NCT03799835                               | NCT03711032                                                               | NCT04165317                             | NCT05714202                                    | NCT05538663                       |
| Intervention         | Durv + BCG (I + M) vs Durv + BCG (I) vs BCG (I + M) | Atezolizumab + BCG (I + M) vs BCG (I + M) | Pembrolizumab + BCG (M) vs Pembrolizumab + BCG (reduced M) vs BCG (I + M) | Sasanlimab + BCG (I + M) vs BCG (I + M) | TAR-200 vs Cetrelimab + TAR-200 vs BCG (I + M) | Sequential Gem/Doc vs BCG (I + M) |
| Administration route | Durvalumab: i.v.<br>BCG: IVS                        | Atezolizumab: i.v.<br>BCG: IVS            | Pembrolizumab: i.v.<br>BCG: IVS                                           | Sasanlimab: SC<br>BCG: IVS              | Cetrelimab: i.v.<br>TAR-200: IVS<br>BCG: IVS   | Gem/Doc: IVS<br>BCG: IVS          |
| BCG M                | 24 mo                                               | 12 mo                                     | 18 mo                                                                     | 24 mo                                   | 24 mo (optional 36 mo)                         | 36 mo                             |
| Participants (n)     | 1018                                                | 516                                       | 975                                                                       | 1070                                    | 1050                                           | 870                               |
| Primary EP           | DFS                                                 | RFS                                       | EFS                                                                       | EFS                                     | EFS                                            | EFS                               |
| Key secondary EPs    | OS, QoL, DSS, QoL                                   | PFS, OS, CR, QoL                          | OS, CRR, RFS, DSS, TTC, DOR, safety/tolerability                          | OS, CR, duration of CR, TTC, QoL        | RFS, OS, MFS, TTC, TTP, safety, QoL            | QoL, safety, toxicity, PFS, CFR   |
| BCG strain           | OncoTICE                                            | Medac, OncoTICE                           | OncoTICE                                                                  | Various, including OncoTICE             | BCG Culture                                    | OncoTICE                          |
| Current status eSCD  | Active, NRC September 2025                          | Active, NRC February 2028                 | Recruiting October 2028                                                   | Active, NRC December 2027               | Recruiting May 2030                            | Recruiting October 2030           |

BCG = bacillus Calmette-Guérin; CFR = cystectomy-free rate; CR = complete response; CRR = complete response rate; DFS: disease-free survival; DOR: duration of response; DSS: disease-specific survival; Durv = durvalumab; EFS = event-free survival; EP = endpoint; eSCD = estimated study completion date; Gem/Doc = gemcitabine + docetaxel; I = induction; i.v. = intravenous; IVS = intravesical; M = maintenance; MFS = metastasis-free survival; NRC = not recruiting; OS = overall survival; Pembrolizumab; PFS = progression-free survival; QoL = quality of life; RFS = recurrence-free survival; SC = subcutaneous; TTC = time to cystectomy; TTP = time to progression.



# High-risk:



*Imfinzi regimen demonstrated statistically significant and clinically meaningful improvement in disease-free survival for high-risk non-muscle-invasive bladder cancer in POTOMAC Phase III trial*

| Sasanlimab + BCG-I+M vs BCG-I+M |           |
|---------------------------------|-----------|
| BCG-I+M (N=351)                 | 89 (25.4) |
| 53 (15.1)                       | 1 (0.3)   |
| 22 (6.3)                        | 7         |
| 7                               | 7         |
| 7                               | 1         |
| 13 (3.7)                        |           |



# BCG unresponsive: CIS

2020

TAR-200

82.4% AAT

CG0070 + pembrolizumab  
82.9% 3m

2022

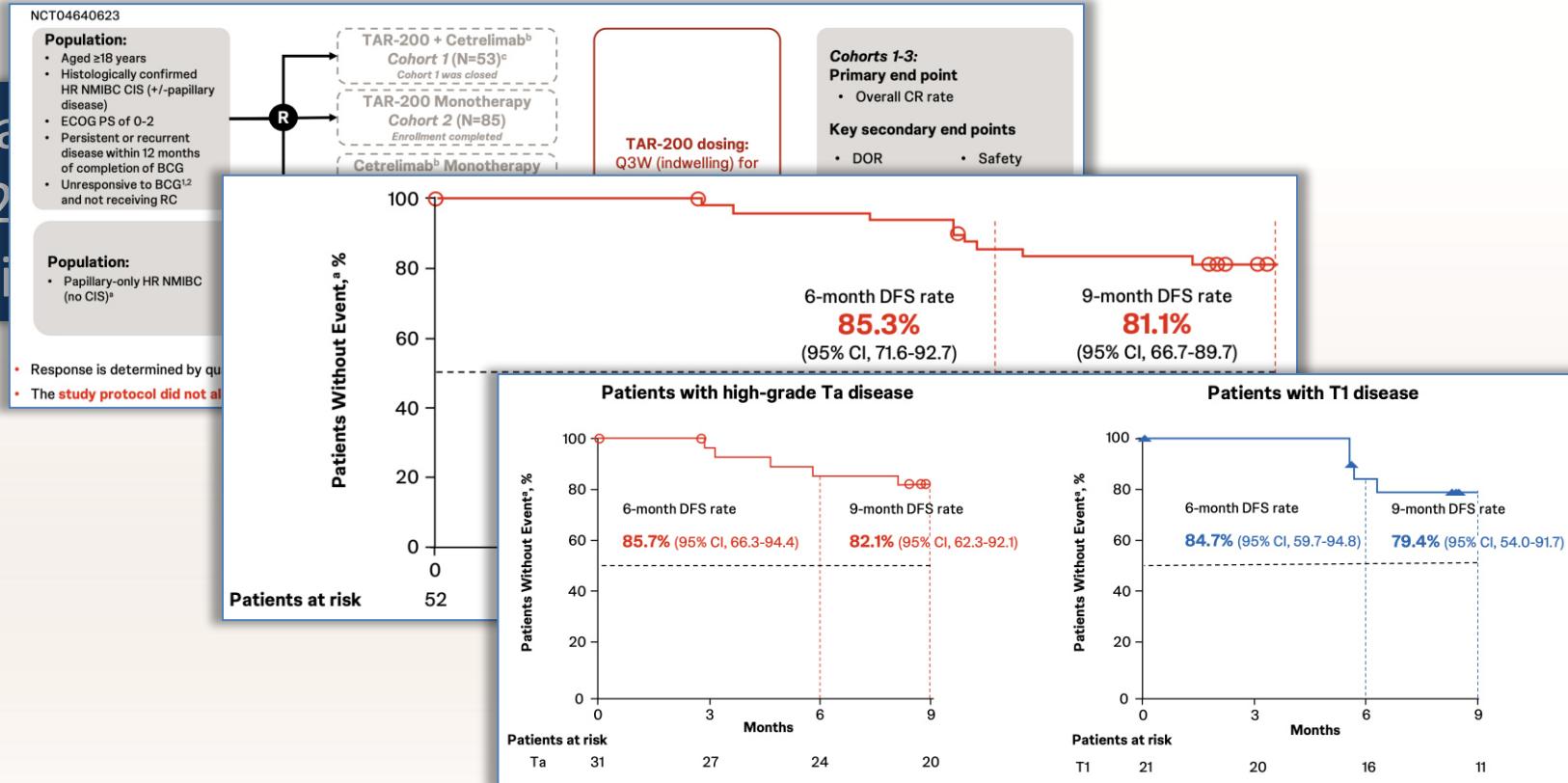
patients with high-risk Bacillus Calmette-Guérin  
unresponsive non-muscle invasive bladder

CRR 53.4% 3m

2024

CG0070

75.5% 3m


Detalimogene  
voraplasmid  
67.0% 3m

unresponsive non-muscle  
invasive bladder cancer



# BCG unresponsive: papillary-only

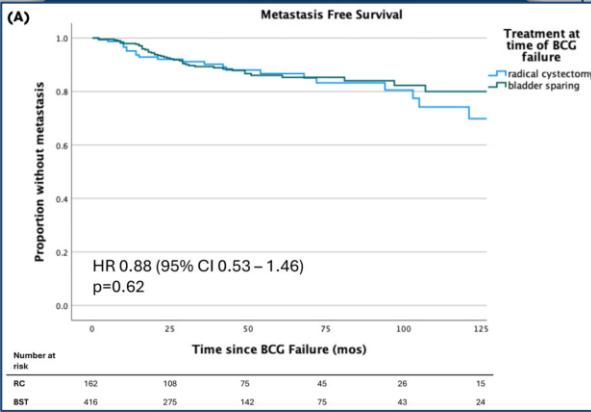
Other a  
12  
(with rei





# Challenges in the BCGu setting

SURVIVAL


COST

BIOMARKERS



# Challenges in the BCGu setting

## SURVIVAL





# Challenges in the BCGu setting

## SURVIVAL

|                | Pembrolizumab     | Nadofaragene firadenovec | BCG + N-803       |
|----------------|-------------------|--------------------------|-------------------|
| Price per dose | \$11,957 (200 mg) | \$60,000 (75 mL)         | \$35,800 (400 µg) |

## COST

|          |               |                |           |
|----------|---------------|----------------|-----------|
| Dosage   | Every 3 weeks | Every 3 months | ≈SWOG-BCG |
| Duration | 24 months     | 12 months      | 18 months |

## BIOMARKER

|               |           |           |           |
|---------------|-----------|-----------|-----------|
| Total doses   | 34        | 4         | 21        |
| Overall cost* | \$406,538 | \$240,000 | \$751,800 |

Estimated cost of a radical cystectomy:  
\$70,000 (90 days), \$150,000 (1 year)



# Challenges in the BCGu setting

SURVIVAL

COST

BIOMARKERS





# CONCLUSIONS

- Bladder cancer is not the same at all stages → **different endpoints**
- NMIBC requires a high **individualized approach**
  - Offer the right **drug** to the right patient
  - Offer the right **plan** to the right patient
- Understand the concept of **cure** in this stage of the disease
- **New therapies** are a reality
  - But... not exempt of **challenges**
- In certain scenarios, we will have to **work together** (even more)



# ¡Muchas gracias!



[felixguerrero@gmail.com](mailto:felixguerrero@gmail.com)



@DrFelixGuerrero