

MADRID 20 - 21 NOVIEMBRE 2024

Impacto de la Terapia Dirigida en el Cáncer de Pulmón ALK

Dolores IslaServicio de Oncología Médica
HCU Lozano Blesa, Zaragoza

Disclosure

Personal financial interests

Consulation Honoraria: AbbVie, Amgen, AstraZeneca, Bayer, BMS, Beigene, Boehringer Ingelheim, F. Hoffmann-La Roche, Johnson & Johnson, Lilly, Merck, MSD, Pfizer, Pharmamar, Sanofi, Takeda

Speaker Honoraria: Amgen, AstraZeneca, Bayer, BMS, Boehringer Ingelheim, F. Hoffmann-La Roche, Johnson & Johnson, Lilly, MSD, Pfizer, Pharmamar, Takeda

Institutional financial interests

Clinical Trials: AbbVie, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, BMS, Daiichi Sankyo, F. Hoffmann-La Roche, GSK, Johnson & Johnson, Lilly, Merck, Mirati, MSD, Novartis, Pfizer, Pharmamar, Sanofi

Research Grant: AstraZeneca, BMS, F. Hoffmann-La Roche, GSK

Other

Executive Board Member of the Commission for the Approval of New Drugs, Regional Health Care Department, Spain

Great Advances in Lung Cancer

Selected Patients

Agenda

1

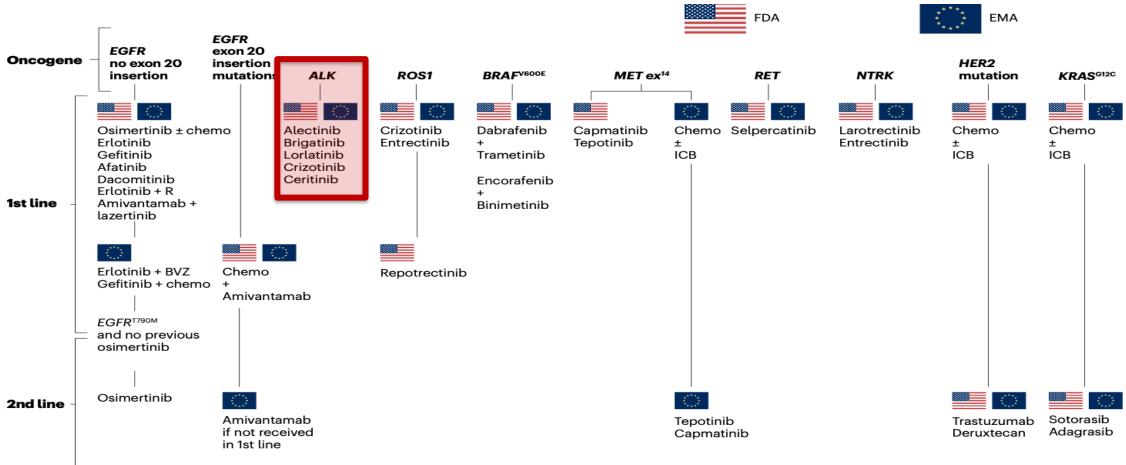
Advanced Disease

Λ

Toxicity

2

Locally Advanced Disease 3


Early Stage

1

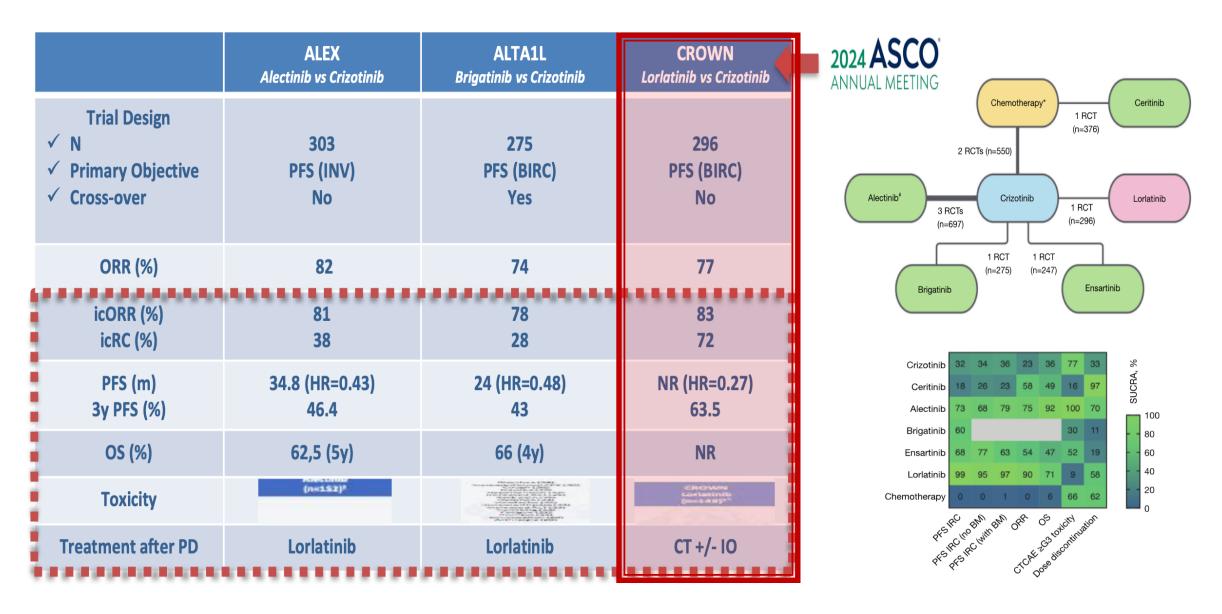
Advanced Disease

Treatment recommendations for Oncogene-driven mNSCLC

Evolution of First- and Next-Generation ALK Inhibitors for ALK+ NSCLC

First-Generation (1G)

Crizotinib

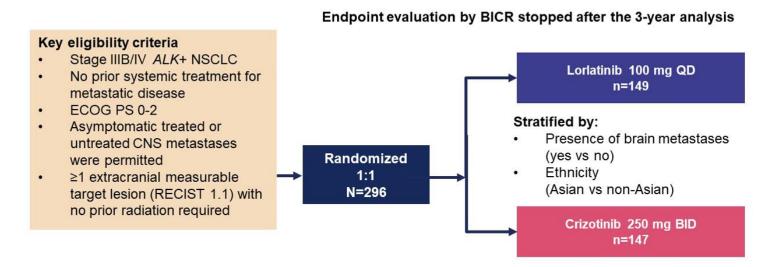

Second-Generation (2G)

Ceritinib
Alectinib
Brigatinib
Ensartinib (China)

Third-Generation (3G)

Lorlatinib

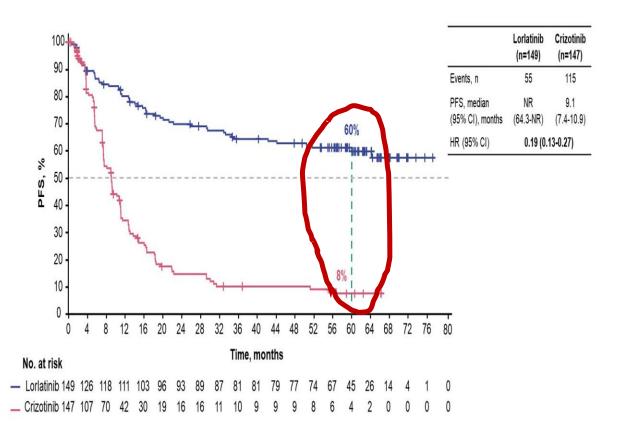
Increased potency, selectivity
Increased CNS penetration & activity
Coverage of on-target resistance mutation(s)


Lin J, et al. IASLC 2023; Hendriks L, et al. Ann Oncol 2023; Solomon B, et al. Lancet Resp Med 2023; Tan D, et al. Precis Cancer Med 2023

Lorlatinib vs Crizotinib in Treatment-Naive Patients With Advanced *ALK*+ Non-Small Cell Lung Cancer: 5-Year Progression-Free Survival and Safety From the CROWN Study

Benjamin J. Solomon, Geoffrey Liu, Enriqueta Felip, Tony S. K. Mok, Ross A. Soo, Julien Mazieres, Alice T. Shaw,

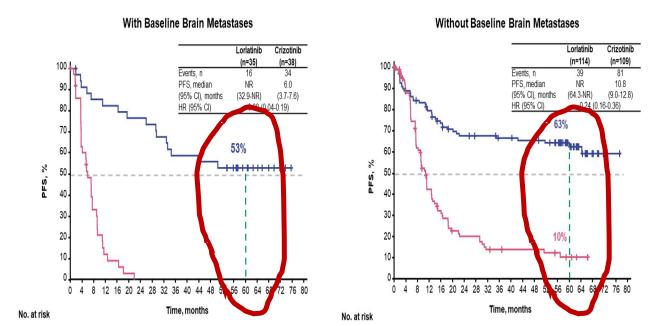
Current Post Hoc Analyses at 5 Years

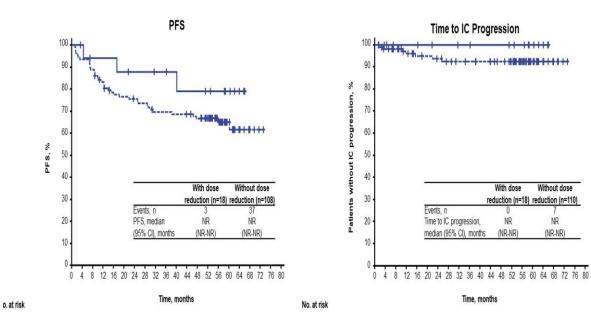

No crossover between treatment arms was permitted

Current analyses

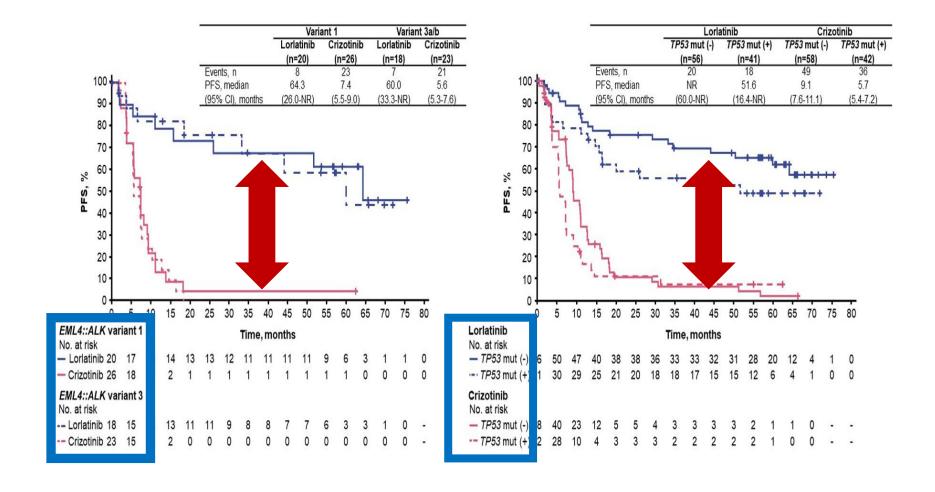
Data cutoff: October 31, 2023

- PFS^a by investigator
- ORR and IC ORR by investigator
- DOR and IC DOR by investigator
- IC TTP by investigator
- Safety
- Biomarker analyses


At 60.2 Months of Median Follow-Up, Median PFS by Investigator Was Still Not Reached With Lorlatinib


PFS Benefit With Lorlatinib Was Observed Across Patient Subgroups

	Patients	s, n (%)	Even	ts, n		
Subgroup	Lorlatinib	Crizotinib	Lorlatinib	Crizotinib		HR (95% CI)
All patients (stratified)	149 (100)	147 (100)	55	115	-	0.19 (0.13-0.27)
Presence of brain metastases		, ,				, , ,
Yes	35 (23)	38 (26)	16	34	——	0.08 (0.04-0.19)
No	114 (77)	109 (74)	39	81	-	0.24 (0.16-0.36)
Ethnic origin	, ,	, ,				
Asian	66 (44)	65 (44)	25	50		0.23 (0.14-0.38)
Non-Asian	83 (56)	82 (56)	30	65		0.19 (0.12-0.31)
Sex	,	, ,		440,550,550		
Male	65 (44)	56 (38)	24	48	→	0.22 (0.13-0.37)
Female	84 (56)	91 (62)	31	67	→	0.21 (0.13-0.32)
Age	Visite V					Approximately 1 - Courses, agreement 1
<65 years	96 (64)	110 (75)	33	88	→	0.19 (0.12-0.28)
≥65 years	53 (36)	37 (25)	22	27	→	0.26 (0.14-0.47)
Smoking status	V	, ,				
Never	81 (54)	94 (64)	30	75	→	0.18 (0.12-0.29)
Current/former	68 (46)	52 (35)	25	39		0.27 (0.16-0.45)
					0.0625 0.25 0.5 1	2
PFS, progression-free survival.					Favors Iorlatinib	vors crizotinib

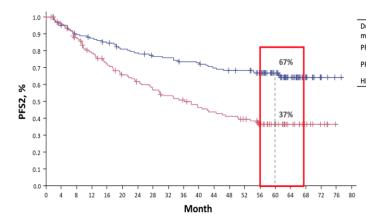

Lorlatinib Showed Superior PFS Benefit Irrespective of Presence or Absence of Baseline Brain Metastases

Dose Reduction Did Not Impact Efficacy of Lorlatinib in Patients Who Had Dose Reduction in the First 16 Weeks

Lorlatinib Treatment Benefited Patients With Poor Prognostic Biomarkers

Patterns of progression with Iorlatinib and insights into subsequent anticancer therapy efficacy in advanced *ALK*+ NSCLC

Tony S.K. Mok, ¹ Benjamin J. Solomon, ² Maria Rosario Garcia Campelo, ³ Yi-Long Wu, ⁴ Guillermo Streich, ⁵

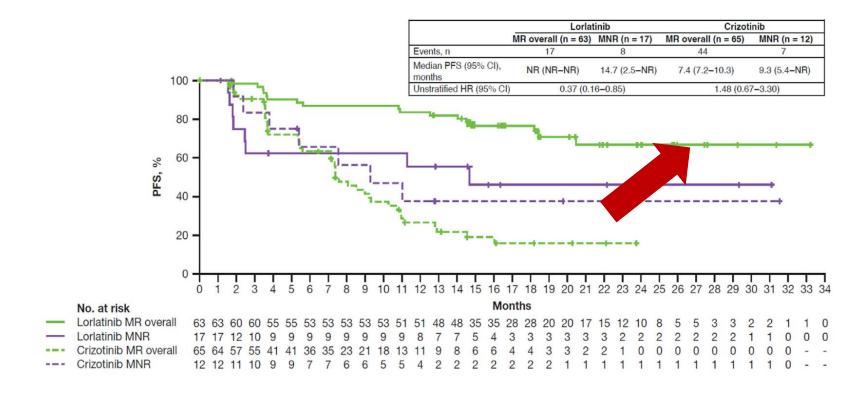

Molecular profiling, n (%)°	Early progressors (n=28) ^a	Nonprogressors (n=45) ^a
Confirmed ALK positive	14 (50)	35 (78)
EML4-ALK variant 1	6 (21)	10 (22)
EML4-ALK variant 2	0	5 (11)
EML4-ALK variant 3	5 (18)	11 (24)
EML4-ALK other variant	3 (11)	7 (16)
Other <i>ALK</i> fusion	0	2 (4)
Unconfirmed ALK positived	14 (50)	10 (22)
TP53 mutation detected	16 (57)	10 (22)

Details of first subsequent systemic anticancer therapy

	Lorlatinib (n=38)	Crizotinib (n=109)
rst subsequent systemic anticancer therapy, n (%)		
ALK TKI	23 (61)	101 (93)
Alectinib	12 (52)	68 (67)
Crizotinib	4 (17)	5 (5)
Ceritinib	3 (13)	3 (3)
Lorlatinib	3 (13)	4 (4)
Brigatinib	1 (4)	21 (21)
Chemotherapy ± anti-angiogenic	13 (34)	4 (4)
Chemotherapy/immunotherapy	1 (3)	0
Chemotherapy/immunotherapy/anti-angiogenic	1 (3)	0
Other ^a	0	4 (4)
OT on first subsequent systemic anticancer therapy, median (IQR), months	9.3 (2.6-22.6)	14.9 (5.3-38.4)
ALK TKIs as first subsequent therapy ^b	12.5 (2.0-31.7)	15.8 (7.0-39.9)
Non–ALK TKIs as first subsequent therapy ^c	6.7 (2.6-19.7)	1.2 (0.8-2.7)

ALK, anaplastic lymphoma kinase; DOT, duration of treatment; TKI, tyrosine kinase inhibitor

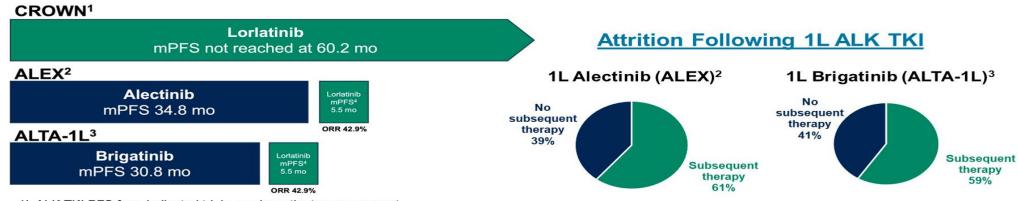
PFS2 was longer in patients who received lorlatinib vs crizotinib as the study treatment



	Lorlatinib (N=149)	Crizotinib (N=147)
uration of follow-up for PFS2, nedian (95% CI), months	61.4 (59.2-62.5)	58.4 (56.8-61.9)
FS2 events, n (%)	48 (32)	78 (53)
FS2, median (95% CI), months	NR (NR-NR)	37.9 (27.4-50.1)
IR (95% CI)	0.43 (0.3	0-0.62)

^{*}Includes investigational drug, cabozantinib, and osimertinib. N numbers are 23 for Iorlatinib and 101 for crizotinib. N numbers are 15 for Iorlatinib and 8 for crizotini

Early Circulating Tumor DNA Dynamics and Efficacy of Lorlatinib in Patients With Treatment-Naive, Advanced, *ALK*-Positive NSCLC


Ross A. Soo, MBBS, PhD, a,* Jean-François Martini, PhD, b

Early ctDNA dynamics predicted better outcome with Lorlatinib but not with Crizotinib

CROWN: My Conclusions and Implications for Practice

The 5-year updated analyses of CROWN (re)affirm lorlatinib as standard-ofcare first-line treatment for patients with metastatic ALK+ NSCLC

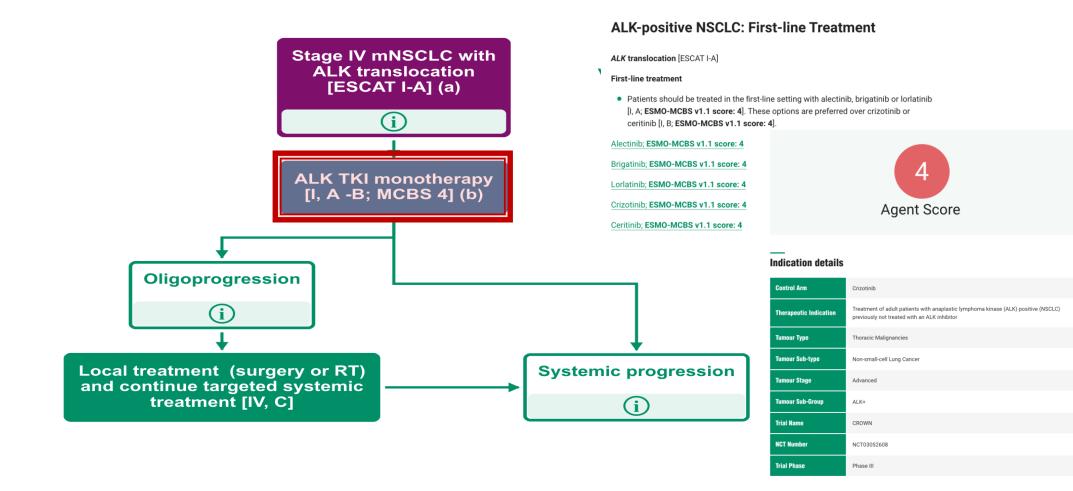
1L ALK TKI PFS from indicated trials, per investigator assessment

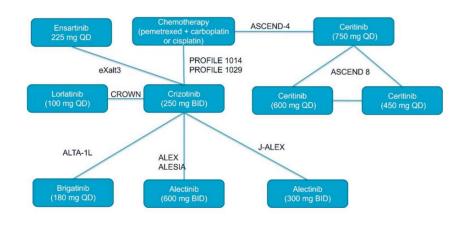
1. Solomon BJ et al., Lancet Respir Med 2023;11(4):354-66; 2. Mok T et al., Ann Oncol 2020;31(8):1056-64 3. Camidge DR et al., J Thorac Oncol 2021;16(12):2091-108; 4. Felip E et al., Ann Oncol 2021;32(5):620-30

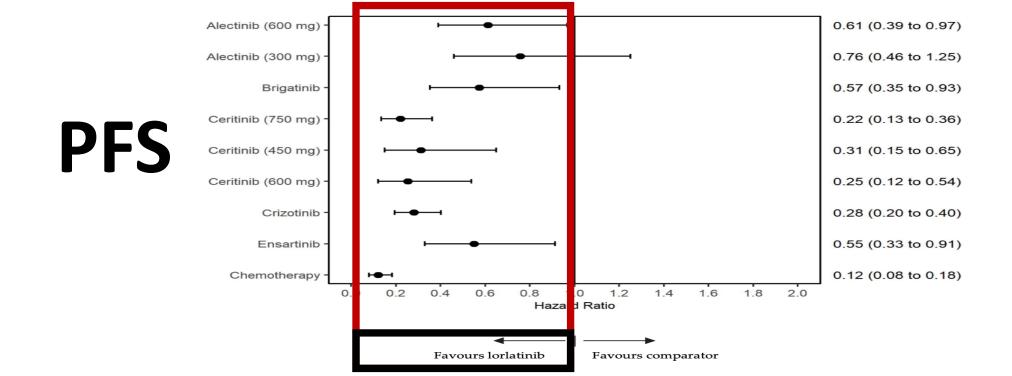
PRESENTED BY: Jessica J. Lin (jjlin1@mgb.org)

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

What will I do next week with a patient with newly diagnosed metastatic ALK+ NSCLC presenting to clinic?


Recognizing that treatment decisions will always need to be individualized to meet each patient's goals and needs, lorlatinib will be my preferred initial therapy for most patients

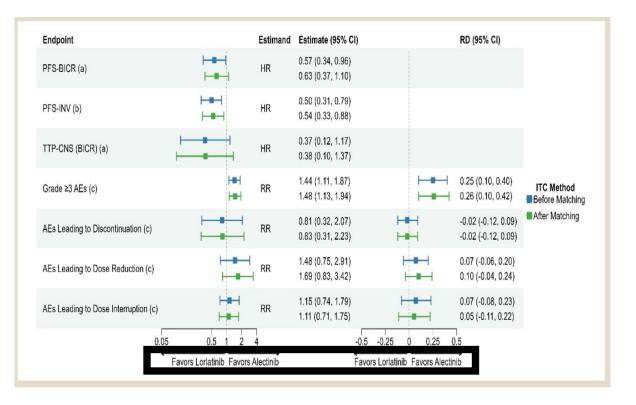

- > ESMO Oncogene-Addicted Non-Small Cell Lung Cancer Living Guideline
- > Management of Advanced and Metastatic Disease (after Positive Findings on Molecular Tests) > ALK Translocation
- > Stage IV mNSCLC with ALK Translocation Before Systemic Progression



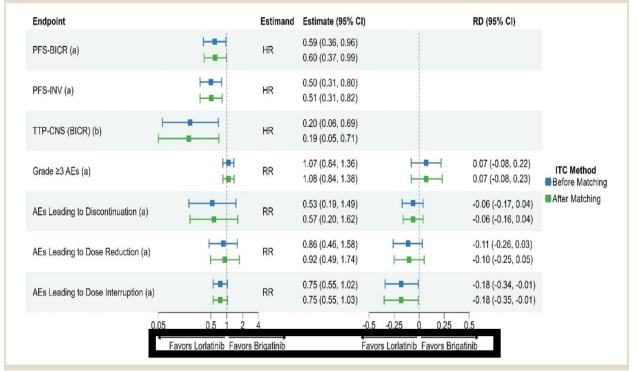
Contents lists available at ScienceDirect Lung Cancer journal homepage: www.elsevier.com/locate/lungcan Research Paper Systematic review and network meta-analysis of lorlatinib with comparison to other anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) as first-line treatment for ALK-positive advanced non-smallcell lung

Sai-Hong Ou^a, Hannah Kilvert^b, Jane Candlish^b, Ben Lee^b, Anna Polli^c, Despina Thomaidou^c,

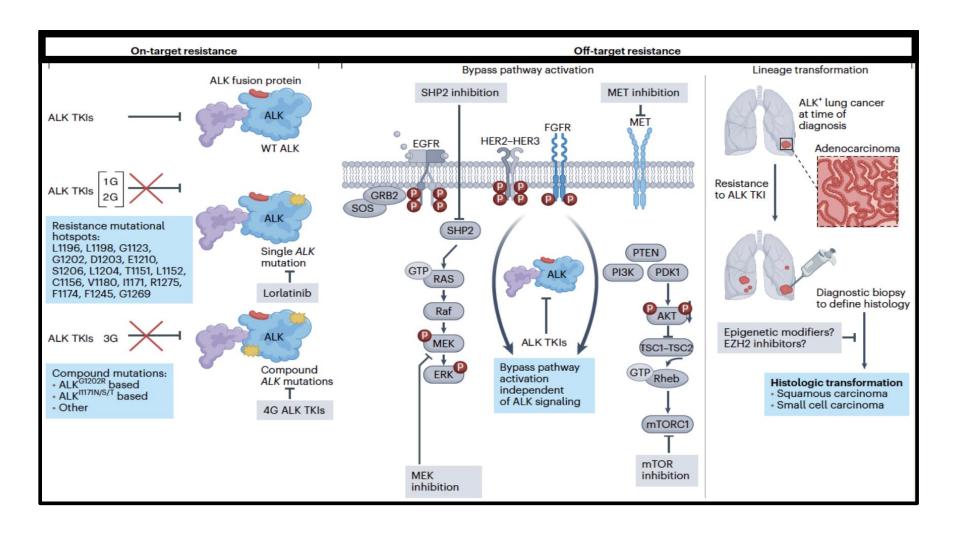
cancer (NSCLC)



Comparative Efficacy and Safety of Lorlatinib for ALK-Positive Advanced/Metastatic NSCLC: Matching-Adjusted Indirect Comparisons


Christine Garcia, Devin Abrahami, Anna Polli, Haitao Chu, Conor Chandler,

Versus Alectinib and Lorlatinib Versus Brigatinib



Conclusion

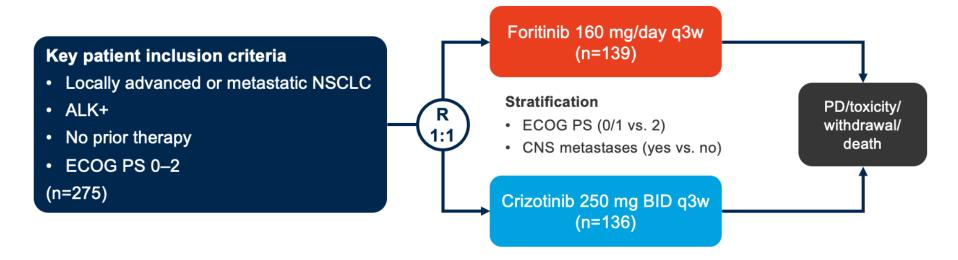
Lorlatinib was associated with superior PFS-INV compared to alectinib and brigatinib in these MAICs. While the estimated rate of Grade ≥ 3 AEs with lorlatinib was higher than that with alectinib, there were no differences in the other studied safety endpoints or compared to brigatinib. Overall, this study bolsters the totality of evidence concerning the comparative efficacy and safety of lorlatinib and supports its use as a first-line treatment for patients with ALK+ advanced/metastatic NSCLC.

Mechanisms of Resistance to ALK Inhibitors



©Lorlatinib Versus Crizotinib in Patients With Advanced ALK-Positive Non-Small Cell Lung Cancer: 5-Year Outcomes From the Phase III CROWN Study

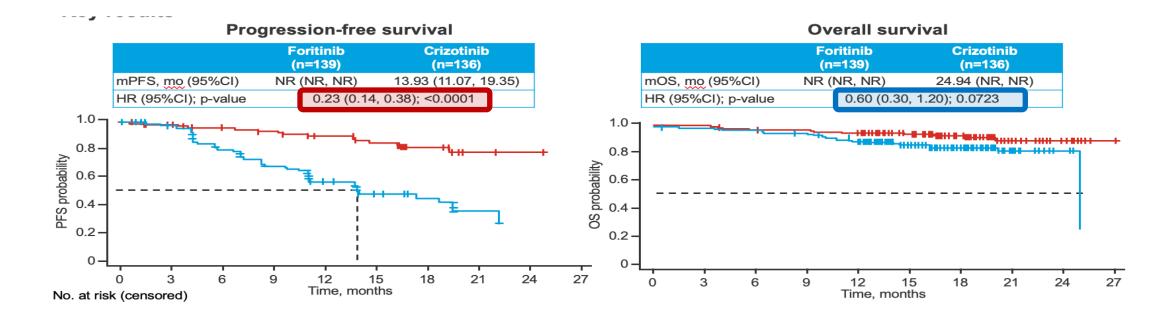
Benjamin J. Solomon, MBBS, PhD¹ (1); Geoffrey Liu, MD² (1); Enriqueta Felip, MD³ (1); Tony S.K. Mok, MD⁴ (1); Ross A. Soo, MBBS, PhD⁵ (1);


TABLE A8. Summary of Resistance Mechanisms in End-of-Treatment ctDNA Samples

Resistance Mechanisms	Lorlatinib (n = 31)	Crizotinib (n = 89)
Resistance mechanisms, No. (%)		
New single ALK mutation	0	8 (9)
ALK compound mutation	0	2 (2)
Bypass mechanism, No. (%)	. (29)	10 (11)
MAPK pathway aberration	3 (10)	1 (1)
PI3K/MTOR/PTEN pathway aberration	2 (6)	0
RTK pathway aberration	4 (13)	5 (6)
Cell cycle pathway aberration	2 (6)	5 (6)
Other gene aberration, No. (%)	11 (35)	19 (21)
Unknown, No. (%)	1 (42)	56 (63)

Randomized, Open-label, Phase III Study of SAF-189s Versus Crizotinib in First-Line ALK-Positive Advanced Non-Small Cell Lung Cancer (NSCLC) REMARK Study

Anwen, Xiong
East Hospital Affiliated to Tongji University
China



Primary endpoint

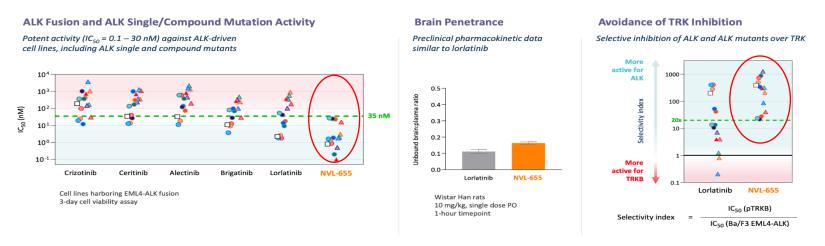
PFS (IRC assessed)

Secondary endpoints

 PFS (investigator assessed), ORR, TTR, DoR, OS, safety

Outcomes	Foritinib (n=139)	Crizotinib (n=136)
ORR, n (%)	29 (92.8)	110 (80.9)
[95%CI]	07.2, 90.0]	[13.3, 01.1]
OR (95%CI)	3.04 (1.41, 6.57)
BOR, n (%)		
PR	129 (92.8)	110 (80.9)
SD	6 (4.3)	22 (16.2)
PD	2 (1.4)	1 (0.7)
NE	2 (1.4)	3 (2.2)
mDoR, mo (95%CI)	NR	15.9 (11.2, NR)

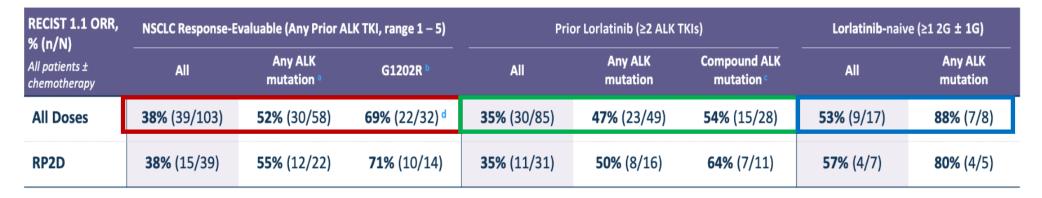
Intracranial response*	Foritinib (n=10)	Crizotinib (n=18)
ORR, n (%)	10 (100)	9 (50.0)
[95%CI]	[09.2, 100]	[20.0, 74.0]
OR (95%CI)		NC
BOR, n (%)		
CR	2 (20.0)	2 (11.1)
PR	8 (80.0)	7 (38.9)
SD	0	8 (44.4)
PD	0	1 (5.6)
mDoR, mo (95%CI)	NR	11.0 (2.9, NR)

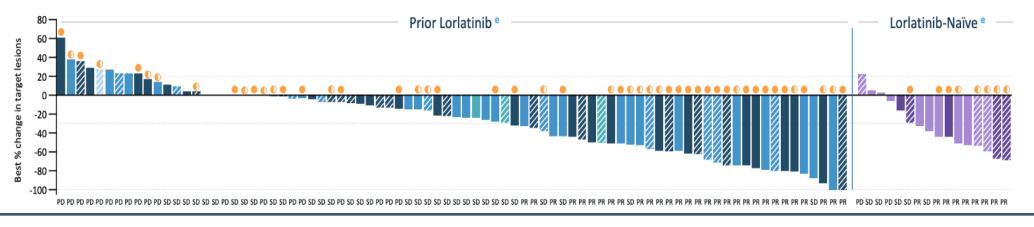

TRAEs, n (%)	Foritinib (n=138)	Crizotinib (n=135)
Any	135 (97.8)	133 (98.5)
Grade ≥3	52 (37.7)	75 (55.6)
Serious	22 (15.9)	16 (11.9)
Led to dose interruption	37 (26.8)	48 (35.6)
Led to dose reduction	33 (23.9)	51 (37.8)
Led to discontinuation	5 (3.6)	3 (2.2)

Conclusions

In Chinese patients with ALK+ advanced NSCLC, 1L foritinib demonstrated a significant improvement in PFS
over crizotinib along with a trend in improvement in OS and no new safety findings

NVL-655: A Rationally Designed ALK-selective, TRK-sparing TKI


Single ALK mutations Compound ALK mutations T1151M | Ba/F3 (v3) L1196M | MGH045-1 (v1) G1202R/T1151M | MR448re (v3) I1171N | Ba/F3 (v1) L1198F | Ba/F3 (v1) G1202R/F1174L | Ba/F3 (v3) F1174L | Ba/F3 (v3) G1202R | YU-1077 (v3) G1202R/L1196M | MGH953-7 (v3) V1180L | Ba/F3 (v1) D1203N | Ba/F3 (v1) G1202R/L1198F | Ba/F3 (v1) G1202R/G1269A | Ba/F3 (v1) I1171N/L1198F | Ba/F3 (v1)


A Global First-in-Human Phase 1/2 Clinical Trial of NVL-655 in Advanced ALK-Positive NSCLC and Other Solid Tumors (NCT05384626)

PHASE 1 DOSE-ESCALATION COMPLETED, FOLLOW-UP CONTINUES

		1.0000	NEO. 11	10000	Transcorp.	RP2D	0.000
NVL-655 Phase 1	All Doses	15 mg QD	25 mg QD	50 mg QD	100 mg QD	150 mg QD	200 mg QD
All-Treated Population	N = 133	3	12	12	32	52	22
NSCLC Response- Evaluable Population	N = 103	3	7	10	27	39	17

Preliminary Activity: Radiographic Tumor Responses Across Previously Treated Patients with ALK+ NSCLC

CNS Activity: Durable Intracranial Responses in Lorlatinib-naïve and Lorlatinib Pre-treated Patients with ALK+ NSCLC **CNS Tumor Shrinkage** (Patients with Measurable CNS Lesions *) IC-ORR (patients with measurable CNS lesions): Lorlatinib-Prior Lorlatinib o Lorlatinib-naïve: 50% (1/2) o Prior Iorlatinib: 15% (2/13) 31% (4/13) including 2 CNS uPRS not confirmed due to discontinuation of treatment in absence of CNS **Duration of Treatment for all Confirmed CNS Responders** No CNS progression among confirmed CNS responders, (Patients with Measurable or Unmeasurable CNS Lesions) including in patients who previously received the brain-penetrant TKI lorlatinib (measurable or Prior unmeasurable CNS lesions) Lorlatinib Treatment duration: 6.7 - 14.4+ months Lorlatinibnaïve

Discontinuation due to TRAE: 2% (3/133) ^a

Dose reduction due to TRAE: 15% (20/133)

Preliminary overall safety profile consistent with avoiding TRK-related neurotoxicities

Treatment-Related Adverse Events (TRAEs) in ≥ 10% of Patients	
All Treated (N = 133)	

Preferred Term	Grade 1 n (%)	Grade 2 n (%)	Grade 3 n (%)	Grade 4 n (%)	Any Grade n (%)
ALT increased	21 (16%)	6 (5%)	17 (13%)	1 (1%)	45 (34%)
AST increased	21 (16%)	7 (5%)	12 (9%)	-	40 (30%)
Constipation	15 (11%)	6 (5%)	-	-	21 (16%)
Dysgeusia	15 (11%)	2 (2%)	-	-	17 (13%)
Nausea	15 (11%)	1 (1%)	-	-	16 (12%)

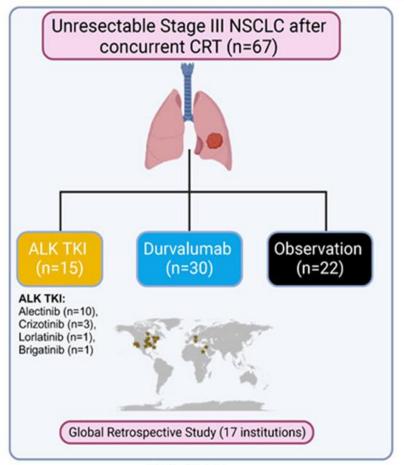
Well tolerated

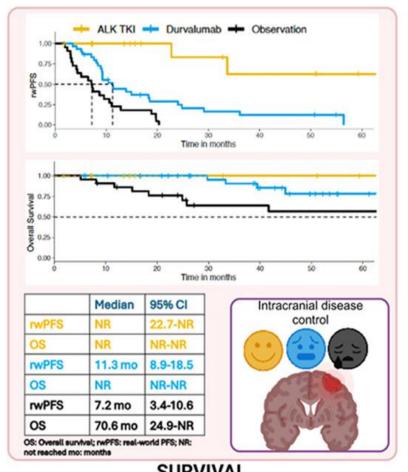
TROPION-Lung05 Datopotamab deruxtecan (Dato-DXd) in previously treated non-small cell lung cancer with actionable genomic alterations

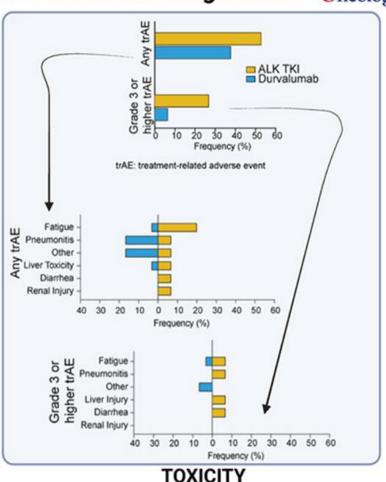
Luis Paz-Ares, 1 Myung-Ju Ahn, 2 Aaron Lisberg, 3 Satoru Kitazono, 4 Byoung Chul Cho, 5

Screening **Endpoints**^a Key inclusion criteria **Treatment** Primary: ORR by BICR Stage IIIB, IIIC, or IV NSCLC Secondary: Presence of ≥1 actionable genomic alteration (EGFR, ALK, ROS1, Dato-DXd By BICR and investigator: DOR, NTRK, BRAF, MET exon 14 skipping, or RET) 6 mg/kg DCR, CBR, PFS, TTR ECOG PS of 0 or 1 Q3W By investigator: ORR ≥1 line of targeted therapy OS, safety, PK, immunogenicity • 1 or 2 prior cytotoxic agent–containing therapies including platinumbased therapy in the metastatic setting Radiographic disease progression after targeted therapy

Response per BICR	All treated patients (N=137)	Patients with <i>EGFR</i> mutations (N=78)	Patients with ALK rearrangement (N=34)
ORR confirmed, n (%) [95% CI] ^a	49 (35.8) [27.8-44.4]	34 (43.6) [32.4-55.3]	8 (23.5) [10.7-41.2]
Median DOR (95% CI), months	7.0 (4.2-9.8)	7.0 (4.2-10.2)	7.0 (2.8-8.4)



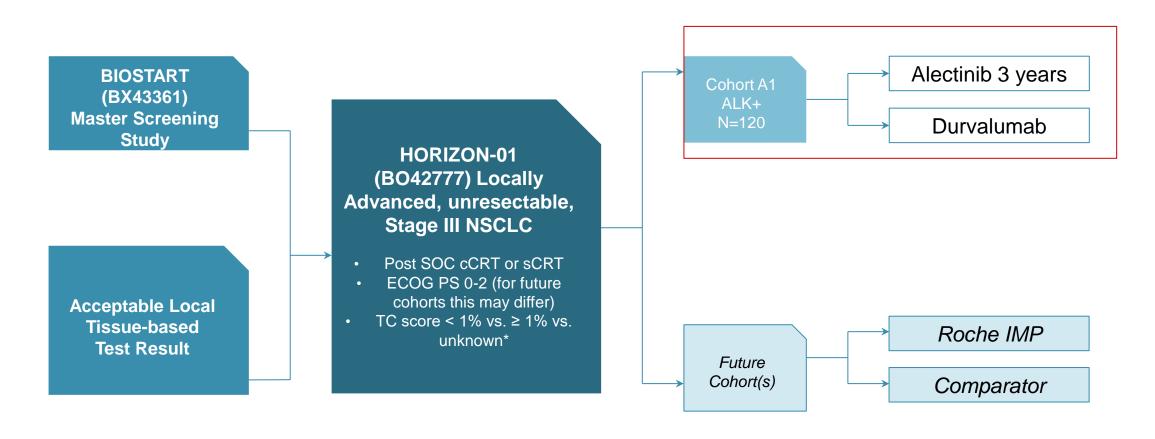

2


Locally Advanced Disease

Consolidation ALK Tyrosine Kinase Inhibitors versus Durvalumab or Observation After Chemoradiation in Unresectable Stage III ALK+ Non-Small Cell Lung Cancer

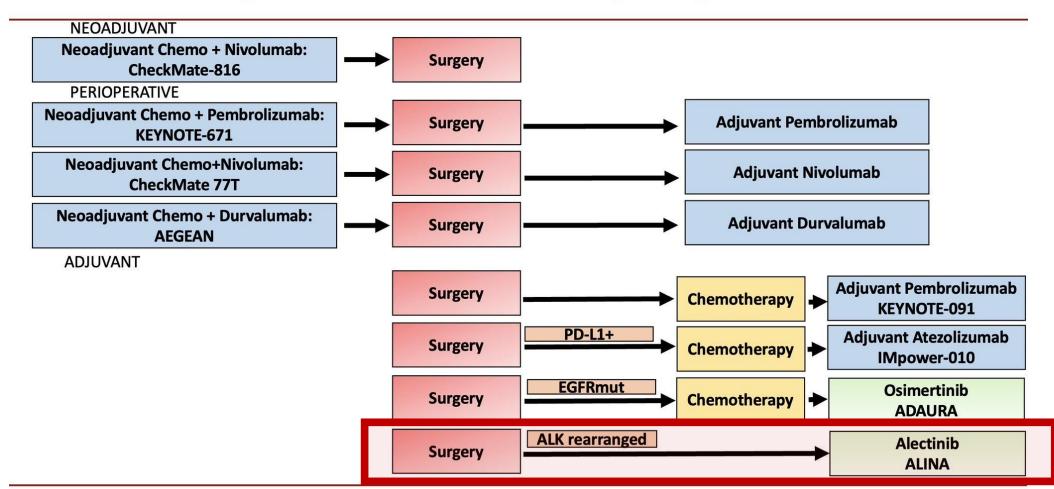
COHORT

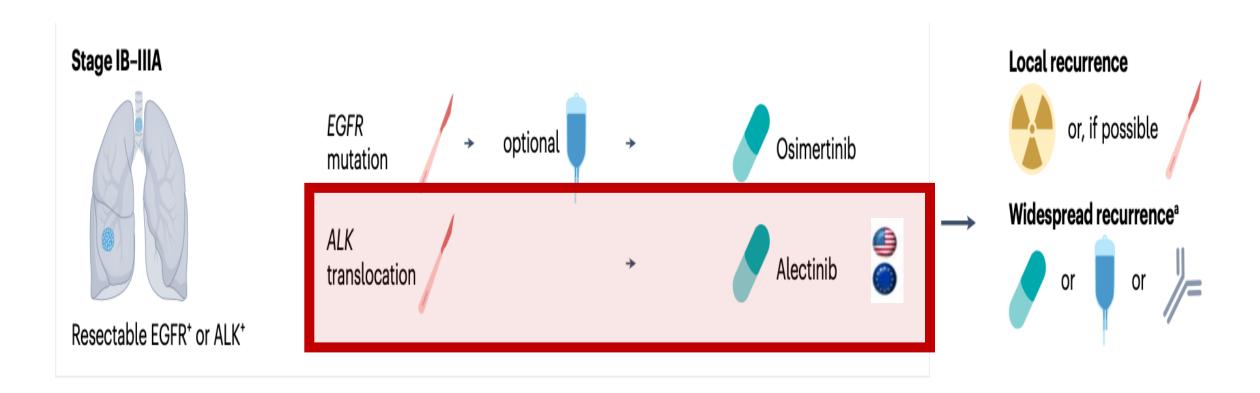
SURVIVAL


CONCLUSION: Consolidation ALK TKI treatment is associated with significantly improved real-world progression-free survival compared to Durvalumab or observation in patients with ALK+ NSCLC

HORIZON-01

International NCT05170204


A Study Evaluating the Efficacy and Safety of Multiple Therapies in Cohorts of Participants With Locally Advanced, Unresectable, Stage III NSCLC



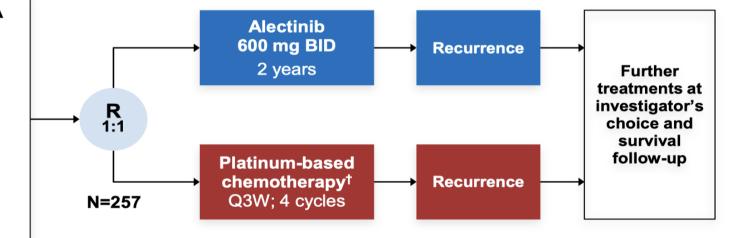
3

Early Stage

2024 Paradigm for Resectable Early-stage NSCLC

ALINA Study

Resected Stage IB (≥4cm)–IIIA ALK+ NSCLC


per UICC/AJCC 7th edition

Other key eligibility criteria:

- ECOG PS 0–1
- Eligible to receive platinum-based chemotherapy
- Adequate end-organ function
- No prior systemic cancer therapy

Stratification factors:

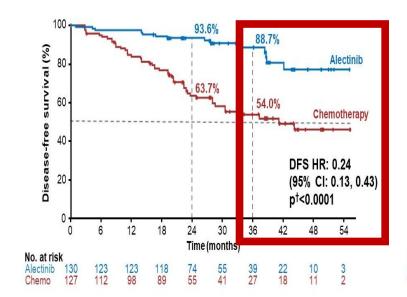
- Stage: IB (≥ 4cm) vs II vs IIIA
- Race: Asian vs non-Asian

Primary endpoint

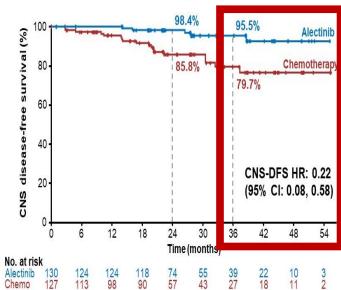
- DFS per investigator,[‡] tested hierarchically:
 - Stage II–IIIA → ITT (Stage IB–IIIA)

Other endpoints

- · CNS disease-free survival
- OS
- Safety


Disease assessments (including brain MRI)§ were conducted: at baseline, every 12 weeks for year 1–2, every 24 weeks for year 3–5, then annually

Data cut-off: 26 June 2023; CNS, central nervous system; DFS, disease-free survival; ITT, intention to treat
*Superiority trial; †Cisplatin + pemetrexed, cisplatin + vinorelbine or cisplatin + gemcitabine; cisplatin could be switched to carboplatin in case of
intolerability; †DFS defined as the time from randomisation to the first documented recurrence of disease or new primary NSCLC as determined by
the investigator, or death from any cause, whichever occurs first; \$Assessment by CT scan where MRI not available; NCT03456076


DFS in stage IB-IIIA (ITT)*

Primary endpoint

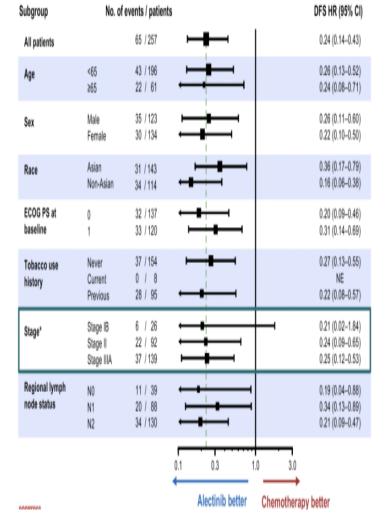
CNS-DFS in stage IB-IIIA (ITT)*

Exploratory endpoint

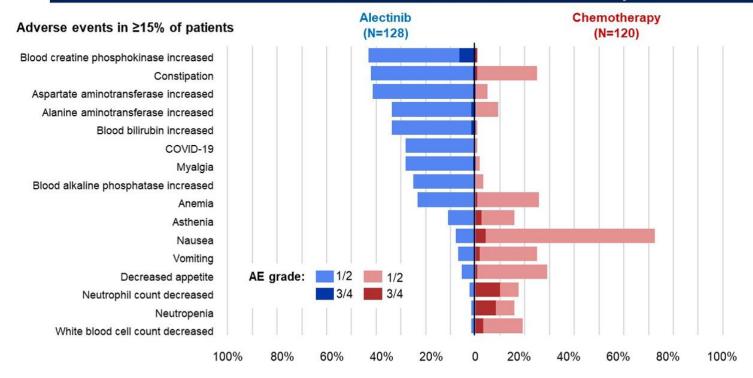
Treatment with adjuvant alectinib resulted in a significant DFS benefit and clinically meaningful CNS-DFS benefit compared with chemotherapy in patients with resected stage IB-IIIA ALK+ NSCLC*

Data cut-off: June 26, 2023; Median follow up, 27.8 months; Time from last patient in to data cut-off was ~18 months;

DFS, disease-free survival; HR, hazard ratio; ITT, intention-to-freat population; "Stage IB (24cm)-IIIA, per UICC/AJCC 7th edition; "Stratified log rank; DFS defined as the time from randomization to the first documented recurrence of disease or new primary NSCLC as determined by the investigator, or death from any cause, whichever occurs first, CNS-DFS defined as time from randomization to the first documented recurrence of disease in the CNS, or death from any cause, Solomon et al. ESMO 2023 (LBA2); Wu et al. N Engl J Med 2024



PRESENTED BY: Prof. Makoto Nishio


Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

KNOWLEDGE CONQUERS CANCER

AEs occurring in ≥15% of patients

Adjuvant alectinib was tolerable, with a manageable safety profile which was in line with the known profile of alectinib^{1,2}

AEs leading to:

Dose reduction

Alectinib: 26% / Chemo: 10%

Dose interruption

Alectinib: 27% / Chemo: 18%

Treatment withdrawal

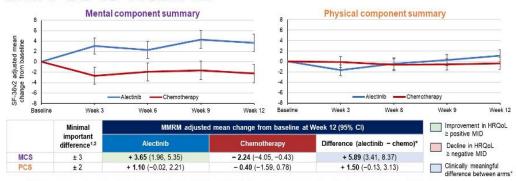
Alectinib: 5% / Chemo: 13%

Median treatment duration

Alectinib: 23.9 months

Chemo: 2.1 months

AE, adverse event, 1. Solomon et al. ESMO 2023 (LBA2); 2. Wu et al. N Engl J Med 2024



Health-related quality of life (HRQoL) results for adjuvant alectinib vs chemotherapy in patients with resected ALK+ NSCLC: data from ALINA

Makoto Nishio, ¹ Yi-Long Wu, ² Fabrice Barlesi, ³ Jin Seok Ahn, ⁴ Dae Ho Lee, ⁵ Jong-Seok Lee, ⁶ Wenzhao Zhong, ² Hidehito Horinouchi, ⁷

Adjusted mean change from baseline in MCS and PCS to Week 12

- Within arms, change from baseline for MCS and PCS were compared with the respective MID:
 - For MCS, a clinically meaningful improvement from baseline was seen with alectinib but not chemotherapy
 - PCS scores remained stable
- Clinically meaningful improvements from baseline in MCS were seen for alectinib versus chemotherapy*

O, confidence interval, HRQuL, health-related quality of the MCS, mental component summary. HQL, interval interval, HRQUL, health-related component summary. HQL from the second difference, MRRM, mixed effects model of repeated measures. PCS, physical component summary. HQLD, from the 5°C 90°C, Enrich basis repeated with the second difference in the second difference in

Adjusted mean change from baseline in health domain scores to Week 12

SF-36v2 health domain	Minimal important difference ^{1,2}	MMRM adjusted mean change from baseline at Week 12 (95% CI)			
		Alectinib	Chemotherapy	Difference (alectinib – chemo)*	
Bodily pain	± 3	+ 4.33 (2.79, 5.87)	+ 1.27 (-0.36, 2.89)	+ 3.06 (0.83, 5.30)	Improvement in HRQoL ≥ positive MID Decline in HRQoL ≥ negative MID Clinically meaningful difference between arms
General health	±2	+ 0.28 (-1.05, 1.62)	- 2.94 (-4.38, -1.50)	+ 3.23 (1.26, 5.19)	
Physical functioning	±3	- 0.86 (-2.15, 0.43)	- 0.75 (-2.12, 0.62)	- 0.11 (-1.99, 1.77)	
Role physical	± 3	+ 3.46 (1.89, 5.03)	- 1.18 (-2.84, 0.47)	+ 4.64 (2.36, 6.92)	
Role emotional	± 4	+ 2.75 (0.80, 4.69)	- 2.94 (-5.00, -0.89)	+ 5.69 (2.86, 8.51)	
Mental health	± 3	+ 3.65 (2.06, 5.24)	- 0.31 (-1.99, 1.38)	+ 3.96 (1.64, 6.27)	
Social functioning	± 3	+ 3.88 (2.26, 5.50)	- 2.17 (-3.91, -0.44)	+ 6.05 (3.68, 8.43)	
Vitality	±2	+ 2.39 (0.75, 4.03)	- 2.03 (-3.76, -0.29)	+ 4.41 (2.02, 6.80)	

- . Within arms, change from baseline for each health domain were compared with the respective MID:
 - · With alectinib, clinically meaningful improvements from baseline were seen for most health domains
 - With chemotherapy, there were no improvements in any domains, and declines in General health and Vitality
- Clinically meaningful improvements from baseline were seen for alectinib versus chemotherapy across all health domains except Physical functioning*

CL confidence interval, PRCoL, health-revised quality of life; VID, minimal important difference; MARNI, micro-effects model of reposted measures.

Post nos MARNI analysis, right/plicted as clinically meaningful where the 95% C did not cross 0, not statistically lested;

Vivine et al. 55-959 Administration Guide 2002; Vivines et al. 55-959 Administration Guide 2002; Vivines et al. 55-959. Manual vivines.

Early improvement from baseline with alectinib, clinicially meaningful improvement vs CT up to week 12

ALINA: exploratory biomarker analyses in patients with resected *ALK*+ non-small cell lung cancer (NSCLC) treated with adjuvant alectinib vs chemotherapy

Benjamin J. Solomon,¹ Yi-Long Wu,² Rafal Dziadziuszko,³ Fabrice Barlesi,⁴

- In these exploratory biomarker analyses in patients with resected ALK+ NSCLC from ALINA
 - Alectinib showed DFS benefit vs chemotherapy regardless of EML4-ALK fusion variant
 - Comparable DFS was seen regardless of EML4-ALK fusion variant in the alectinib arm
 - This is consistent with the findings of the ALEX trial in the metastatic setting, which showed that *EML4-ALK* fusion variants did not affect efficacy in patients with metastatic *ALK*+ NSCLC¹
 - In the alectinib arm, patients with TP53 mutations showed a trend towards worse DFS vs patients with WT TP53

Neoadjuvant Alectinib in Potentially Resectable Stage III ALK-positive NSCLC:

ALNEO Phase II Trial

ALNEO Study Design

 Resectable locally advanced stage III NSCLC

 Candidate for surgical resection after multidisciplinary discussion

- ALK positive (IHC/FISH/NGS)
- No Previous treatment
- ECOG PS 0-1

Neoadjuvant phase

Adjuvant phase

Adjuvant phase

Alectinib 600mg bid for 2 cycles

Surgery (non-PD)

Alectinib 600mg bid for 24 cycles

20 Italian Centers

n=25

21 (84)

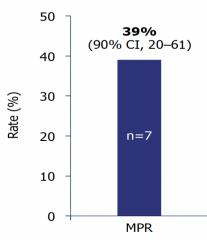
18 (86)

17 (81)

2 (9.5) 2 (9.5)

20 (95)c

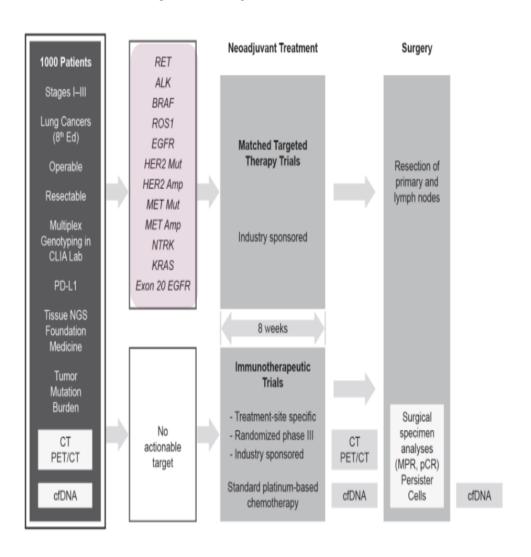
4.5(2.7-6.0)

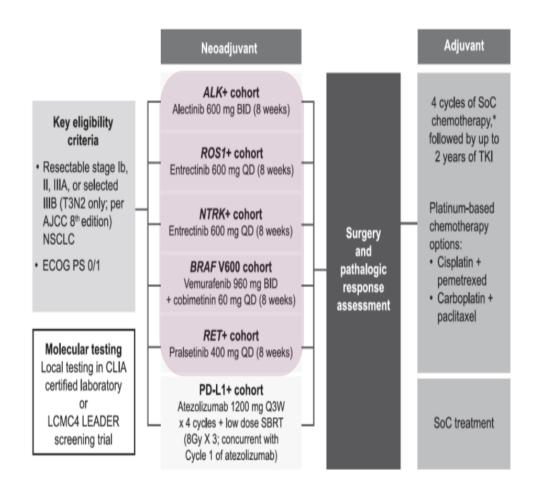

6(1-20)

Primary Endpoint: MPR by BICR

Secondary Endpoints: pCR by BICR, OR, EFS, DFS, OS, AEs

Results - Primary Endpoint


MPR: 39% pCR: 17%


Pathologic Response n=18 MPR, n (%) 7 (39) pCR, n (%) 3 (17) No MPR, n (%) 6 (33) Not Assessed, n (%) 5 (28) ^a Objective Response ^b n=25 CR, n (%) 1 (4) PR, n (%) 19 (76) SD, n (%) 4 (16) PD, n (%) 1 (4) ORR, (%) 20 (80)		
pCR, n (%) 3 (17) No MPR, n (%) 6 (33) Not Assessed, n (%) 5 (28) ^a Objective Response ^b n=25 CR, n (%) 1 (4) PR, n (%) 19 (76) SD, n (%) 4 (16) PD, n (%) 1 (4) SI	Pathologic Response	n=18
No MPR, n (%) 6 (33) Type Not Assessed, n (%) 5 (28)a Lo Objective Responseb n=25 O CR, n (%) 1 (4) Received PR, n (%) 19 (76) M SD, n (%) 4 (16) M PD, n (%) 1 (4) st	MPR, n (%)	7 (39)
Not Assessed, n (%) 5 (28) ^a Lo Objective Response ^b n=25 CR, n (%) 1 (4) PR, n (%) 19 (76) SD, n (%) 4 (16) PD, n (%) 1 (4)	pCR, n (%)	3 (17)
Objective Responseb n=25 CR, n (%) 1 (4) PR, n (%) 19 (76) SD, n (%) 4 (16) PD, n (%) 1 (4)	No MPR, n (%)	6 (33)
CR, n (%) 1 (4) Recei PR, n (%) 19 (76) alecti SD, n (%) 4 (16) Me PD, n (%) 1 (4) sur	Not Assessed, n (%)	5 (28)ª
CR, n (%) 1 (4) PR, n (%) 19 (76) SD, n (%) 4 (16) PD, n (%) 1 (4)	Objective Beenensch	n-25
PR, n (%) SD, n (%) PD, n (%) 19 (76) 4 (16) Med sure		
SD, n (%) 4 (16) Med PD, n (%) 1 (4) surg		` '
PD, n (%) 1 (4) surg		
ORR, (%) 20 (80) Med		
	SD, n (%)	4 (16)

- ^a4 patients did not undergo surgery, 1 patient underwent explorative thoracotomy; ^bat pre-surgical evaluation; ^c2 patients received adjuvant alectinib even though surgery was not radical.
- Neoadjuvant treatment was well tolerated. G1-2 TEAEs were reported in 14 (56%) cases. No Grade ≥3 treatment-related AEs were observed;
- · After a median follow-up of 10.8 months (IQR: 4.9-22.5), a total of 159 adjuvant courses were administered and the treatment appeared to be well tolerated.

LCMC Leader study, neoadjuvant

NAUTIKA study, perioperative

4

Toxicity

Toxicity Profiles of ALK TKIs are distinct and manageable

Alectinib¹

- Constipation
- Anemia
- Fatigue
- Blood bilirubin increased

Brigatinib²

- Diarrhea
- Increased CPK level
- Cough
- Nausea
- Hypertension
- Increased AST
- Back pain
- Dyspnea
- Headache
- Increased lipase
- Increased ALT
- Vomiting
- Fatigue Pruritus Constipation Arthralgia

Lorlatinib³

- Hypercholesterolemia
- Hypertriglyceridemia
- Edema
- Increased weight
- Peripheral neuropathy
- Cognitive effects
- Diarrhea

*Most common AEs occurring in ≥20% of patients in ALEX, ALTA-1L, and CROWN trials are shown

Clinical Drug Investigation https://doi.org/10.1007/s40261-024-01379-7

CURRENT OPINION

Expert Consensus on the Management of Adverse Events of Lorlatinib in the Treatment of *ALK*+ Advanced Non-small Cell Lung Cancer

Edurne Arriola¹ · Javier de Castro² · Rosario García-Campelo³ · Beatriz Bernárdez⁴ · Reyes Bernabé⁵ · Jordi Bruna⁶ · Manuel Dómine⁷ · Dolores Isla⁸ · Óscar Juan-Vidal⁹ · Teresa López-Fernández¹⁰ · Ernest Nadal¹¹ · Delvys Rodríguez-Abreu¹² · María Vares¹³ · Úrsula Asensio¹⁴ · Luis F. García¹⁴ · Enriqueta Felip¹⁵

Accepted: 23 June 2024 © The Author(s) 2024

• Lorlatinib:

- an effective treatment
- long-term use: <u>AEs</u> may occur, to ensure its efficacy and the QoL
- Lorlatinib has AEs that need to be monitored and treated appropriately to maximize drug efficacy and patient safety

Hypercholesterolemia and hypertriglyceridemia

Main goal

- LDL-cholesterol 100 mg/dl (70 mg/dl for high-risk patients; 55 mg/dl for very-high risk patients).
- Triglycerides < 200 mg/l.

Determinations

- Before starting lorlatinib.
- 2 weeks, 4 weeks, 2 months, and every 3-6 months later according patient's condition and how the dyslipidemia is controlled.

Management

- Baseline hypercholesterolemia should be managed based on LDL-cholesterol goals.
- Treatment should be complemented with changes in lifestyle, adequate diet, and physical exercise.
- For new lorlatinib induced hypercholesterolemia:
 - Mild/moderate increase in cholesterol (grade 1-2): lipid-lowering therapy + continue lorlatinib.
 - Severe increase in cholesterol (grade 3-4): lipid-lowering therapy + discontinue lorlatinib until mild/moderate toxicity is reached, then resume at lower dose.

First-line lipid-lowering therapy for hypercholesterolemia

- Mild/moderate (grade 1-2): rosuvastatin 10 mg/day orally at dinner.
- Severe (grade 3-4): rosuvastatin 20 mg/day + ezetimibe 10 mg/day orally at dinner, with a dose increase being considered if there is no improvement.
- <u>If intolerance</u>: ezetimibe ± bempedoic acid.
- Combination of statins with other intensive lipid-lowering strategies (e.g. iPCSK9) are recommended in severe cases.

First-line lipid-lowering therapy for hypertriglyceridemia

- Fenofibrate 250 mg/day during meals if triglycerides > 200 mg/dl under statins.
- Icosapent ethyl 2 g at breakfast and 2 g at dinner (patients with atherosclerotic cardiovascular disease and LDL-cholesterol ≤ 100 mg/dl and triglycerides > 150 mg/dl).

Arterial hypertension

- Main goal: < 140/90 mm Hg (< 130/80 mm Hg for high-risk patients).</p>
- Management
 - Monitor blood pressure 2 weeks after initiation and at least once a month throughout treatment.
 - Grade 2 (< 160/100 mm Hg): angiotensin-converting enzyme inhibitor or angiotensin receptor blocker + continue lorlatinib → if not controlled at moderate doses add dihydropyridine calcium channel blockers → if not controlled, patient should be referred to the Cardio-Oncology clinic.
 - Grade 3-4 (≥ 160/100 mm Hg): angiotensin-converting enzyme inhibitor or angiotensin receptor blocker and dihydropyridine calcium channel blockers → if not controlled add spironolactone → if not controlled patient should be referred to the Cardio-Oncology clinic.
 - If severe hypertension is diagnosed (systolic blood pressure ≥ 180 mm Hg or diastolic blood pressure ≥ 110 mm Hg), lorlatinib should be temporarily withheld until the blood pressure is < 160/100 mm Hg.
 - Avoid β-blockers, verapamil or diltiazem.
 - Treatment should be complemented with a low-salt diet and physical exercise.

	Initial doses	Moderate doses	Max doses
Ramipril	2.5 mg/24 h	5 mg/24 h	10 mg/24 h
Enalapril	2.5 mg/12 h	10 mg/12 h	20 mg/12 h
Candesartan	4-8 mg/24 h	16 mg/24 h	32 mg/24 h
Telmisartan	20 mg/24 h		40 mg/24 h

Hyperglycemia

Determinations

- HbA1c at baseline and every 6 months.
- Blood glucose and the usual blood tests at baseline and every month.

Management

- Lifestyle changes, a diabetic diet, and physical exercise should be considered.
- Grade 2: oral antidiabetic: iSGLT2s (empagliflozin, canagliflozin, dapagliflozin) and
 GLP1-RAs (liraglutide, semaglutide) → if not controlled, add metformin.
- Grade 3-4 (> 250 mg/dl glucose despite treatment): insulin + discontinue lorlatinib until glycemic control is achieved and resume a reduced dose.

Neurological adverse events (Part 1)

Suggestions before initiating Iorlatinib

- To know the rate of neurological toxicity related to lorlatinib.
- Check for possible factors that could increase or favor neurological toxicity (brain metastases, brain radiation, brain surgery, psychiatric disease, psychiatric medication, antiepileptics, corticoids, opioids or derivatives).
- Review the patient's drugs and change all those identified as possible potentiators of toxicity (see Table 4 of drug interactions).
- Interview with the patient and family to notify them of the possible occurrence of neurological adverse reactions and how to identify them correctly.
- Baseline study to know the starting situation:
 - MRI (or TC if not available) to establish the existing damage in the nervous system (brain metastases, leptomeningeal infiltration, vascular impairment, etc.).
 - Baseline cognitive study, either by means of anamnesis, questions to the patient/family or by means of objective quick and easy tests (e.g., Controlled Oral Word Association Test, COWAT).
 - Check for symptoms of carpal tunnel syndrome and basal peripheral neuropathy.

How to assess the occurrence of toxicity during treatment with lorlatinib

- Compare cognitive status with baseline to learn whether early dose reduction could affect toxicity in patients with a history of cognitive impairment or prior mental disease or who develop toxicity during treatment with lorlatinib. In the case of patients with brain metastases, it is suggested to repeat cranial MRI every 3 months.
- Repeat the MRI only in case of cognitive symptoms or dysarthria.
- Propose assessment by a psychiatrist or neurologist depending on the toxicity control and the personal situation of each patient.

Neurological adverse events (Part 2)

What to do if toxicity appears

- Teach the patient and family members how to proceed with each of these adverse events.
- Peripheral neuropathy:
 - Grade 1-2: maintain lorlatinib without changing the dose or consider a lower dose depending on the patient's profile and as clinically indicated. If grade ≥ 2, before dose reduction or discontinuation, refer the patient for neurological assessment.
 - Grade ≥ 3: discontinue lorlatinib until resolution of symptoms to grade ≤ 2 or baseline values. Then, resume at a reduced dose.
 - Treatments:
 - If associated with pain or disturbing paresthesia → duloxetine.
 - If associated with edema → diuretics.
- Cognitive effects, mood effects, and effects on speech (first, review again potential new medications introduced during the treatment, and the psychiatric status):
 - Grade 1: maintain or reduce the dose of lorlatinib is recommended.
 - Grade 2-3: lorlatinib should be discontinued until toxicity is grade ≤1 and lorlatinib can be resumed at a lower dose.
 - Grade 4: Iorlatinib should be permanently discontinued.
 - Treatments:
 - For anxiety → benzodiazepines, avoiding alprazolam and midazolam.
 - For depression → duloxetine and agomelatine.
 - For speech effects → management based on the subjective impact experienced by the patient, reminding the pros and cons of increasing or decreasing lorlatinib dose.
 - For psychosis/mania/hallucinosis → olanzapine is recommended; avoid quetiapine and ziprasidone because of interactions with lorlatinib.
 Risperidone and clozapine should be used with caution.

Edema

- Monitor edema at each visit.
- Grade < 3:</p>
 - Physical measures (leg elevation, moderate exercise or compression stockings).
 - Delay the use of diuretics as late as possible.
 - If diuretic is needed → furosemide 20-40 mg/day (take care if hypokalemia or renal insufficiency).
 - Maintain Iorlatinib, although it should be taken into account how it may affect the patient's quality of life.
 - N-terminal pro-brain natriuretic peptide (NT-proBNP) assessment.
- Grade ≥ 3:
 - NT-proBNP assessment + echocardiogram to rule out other causes.
 - Discontinue Iorlatinib until resolution of symptoms to grade ≤ 2 or baseline values, then resume at lower doses. If there are doubts about the existence of associated heart failure, an electrocardiogram and echocardiogram should be considered. Then resume treatment with reduced dose Iorlatinib.

Diarrhea, nausea, vomiting, constipation

- Grade < 3:</p>
 - Maintain Iorlatinib or reduce dose if clinically indicated.
 - If grade 2 diarrhea is sustained over time (15-30 days), and interferes with daily life, reduce lorlatinib dose.
- Grade ≥ 3:
 - Discontinue Iorlatinib until resolution of symptoms to grade ≤ 2 or baseline values, then resume at a reduced dose.
- Treatments:
 - Diarrhea → loperamide (initially two tablets [4 mg] and then one [2 mg] for each additional bowel movement up to a maximum of 8 tablets [16 mg]).
 - Constipation → lactulose.
 - Nausea and vomiting → recommended treatment for this level of emesis and the next level include metoclopramide, domperidone or chlorpromazine or 5-HT3 inhibitors such as ondasetron, granisetron or dolasetron.

Interstitial lung disease/pneumonitis

Diagnosis:

- Clinical evaluation (new pulmonary symptoms or worsening of existing ones, such as dyspnea, cough, chest pain, hypoxia).
- Imaging tests (to consider other etiologies, such as pneumonia, heart failure or metastatic disease).
- Biopsy only to rule out an infectious process.
- Check if the patient has history of pulmonary disease, have undergone previous radiotherapy or have received immunotherapy.
- Treatment:

Grade 1:

- Observation
- Stop lorlatinib and then resume at the same dose
- CT scan at 6 weeks

Grade 2:

- Stop lorlatinib
- Oral corticosteroid (1 mg/kg/day)
- Imaging tests
- If improvement occurs after 3-4 weeks, resume lorlatinib at the same dose
- If the patient is receiving corticosteroids, a reduced dose of lorlatinib of 75 mg/day would be used

Grade 3:

- Hospitalization
- Lorlatinib should be permanently discontinued
- Intravenous corticosteroids (1-2 mg/kg/day)

Grade 4:

- ICU admission
- Lorlatinib should be permanently discontinued
- Intravenous corticosteroid (2 mg/kg/day) and other treatments as needed
- Not to exceed the maximum dose of corticoids (prednisone) of 80 mg/day
- If there is intolerance to a corticosteroid, another corticosteroid with equivalent dose should be considered.
- If the patient is going to be treated with high doses of corticosteroids for a prolonged period, it is suggested to perform a prophylaxis against:
 - Pneumocystis jirovecii
 - Indication:
 - Prednisone (or equivalent) ≥ 30 mg/day for ≥ 4 weeks.
 - Prednisone ≥ 15 mg/day and < 30 mg/day for ≥ 8 weeks (uninterrupted or intermittent).
 - Prednisone ≥ 10 mg/day for ≥ 4 weeks and ≥ 2 risk factors: age >65, coexisting lung disease (lung cancer, COPD, fibrosis...), use of immunotherapy (rituximab, anti-TNF), ECOG ≥ 3, malnutrition, diabetes.
 - Management:
 - Cotrimoxazole 800/160 mg every 48 hours or 400/80 mg per day.
 - Alternatively, inhaled pentamidine 300 mg/month, atovaquone 1500 mg/day or dapsone 100 mg/day.
 - Duration:
 - At least 4-6 weeks after the tapering period of corticosteroids.

Tuberculosis

- Indication:
 - Prednisone ≥ 10 mg/day for ≥ 4 weeks.
- · Management:
 - Screening for latent tuberculosis is recommended, by IFN-γ test (preferred over tuberculin skin test).
 - If positive, consultation with an infectious disease specialist is recommended.

Conclusions

- 1. Follow the guidelines of the **product data sheet**, but also **individually** to <u>reduce the dose of lorlatinib</u> to avoid *possible drug interactions* with concomitant treatments or to prevent *worsening of the patient's QoL*
- 2. Some severe toxicities, that are **laboratory findings** with no symptomatology (e.g., amylase elevation grade ≥3), may not require discontinuation of treatment or may be left to physician's discretion
- 3. Current clinical context of what is known, and other possible causes must be ruled out.
- 4. Patient / family education and direct communication
- 5. AEs of lorlatinib can affect different organs and systems, participation of a MDT: cardiologists, neurologists, internal medicine specialists, and oncology pharmacists

Lung Cancer 191 (2024) 107535

Contents lists available at ScienceDirect

Lung Cancer

Review article

Geoffrey Liu^{a,*}, Julien Mazieres^b, Jan Stratmann^c, Sai-Hong Ignatius Ou^d, Tony Mok^e, Mary Grizzard^f, Yasushi Goto^g, Enriqueta Felip^h, Benjamin J. Solomonⁱ, Todd M. Bauer^f

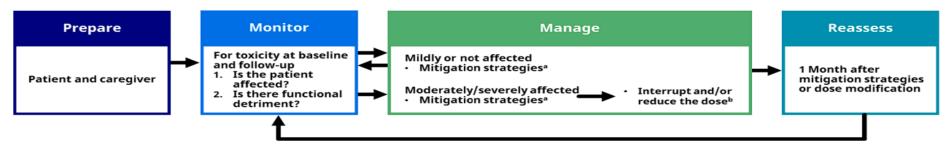
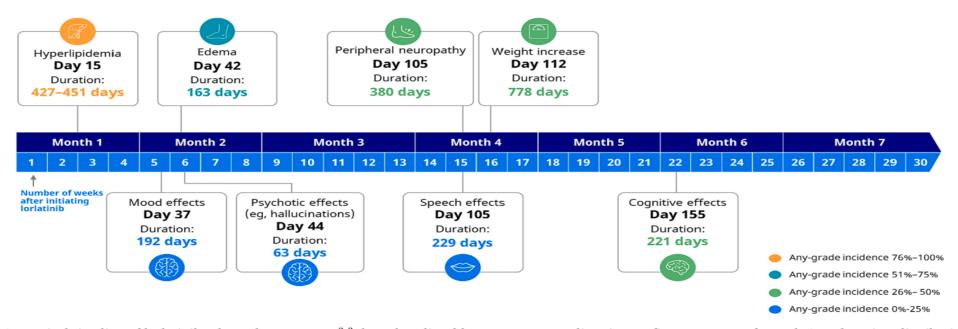
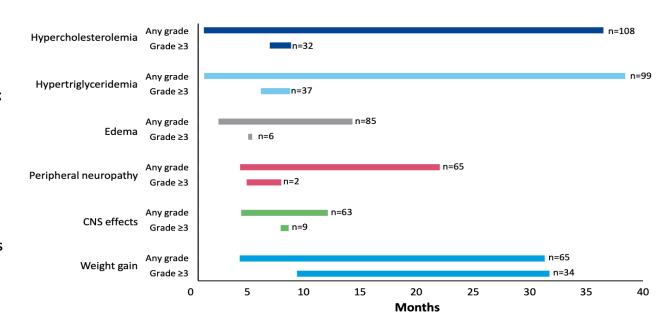



Fig. 1. General management of lorlatinib toxicities: prepare, monitor, manage, reassess. ^aSee Fig. 3A and B and Table 2 for details. ^bInterrupt refers to a temporary dose interruption. Reduce refers to dose reduction.


Fig. 2. Typical timeline of lorlatinib select adverse events. ^a The values listed here represent median time to first occurrence for each AE. There is a distribution in which some may occur earlier or later than these median values. [12–14,18,27].

Kinetics and Management of Adverse Events Associated With Lorlatinib After 5 Years of Follow-Up in the CROWN Study

Todd M. Bauer, 1 Benjamin J. Solomon, 2 Julien Mazieres, 3 Dong-Wan Kim, 4 Diego Cortinovis, 5 Takako Inoue,6 Richu Sharma,7 Holger Thurm,8 Anna Polli,9 Geoffrey Liu¹⁰

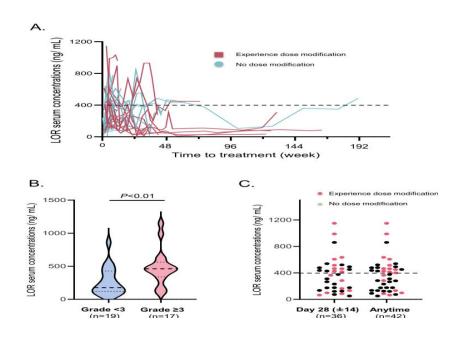
Time to Onset and Duration of AEs

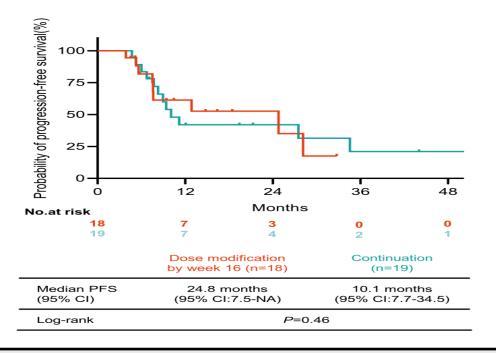
- For hyperlipidemia, median time to onset of any-grade AEs was 15 days, and median duration was ≈37 months: median time to onset of grade ≥3 AEs was ≈6 months
- For any grade edema, peripheral neuropathy, and CNS effects, median time to onset was 2-4 months, and median duration was 8-18 months
- Only weight gain showed grade ≥3 AE that lasted more than 3 months

Lung Cancer 196 (2024) 107954

Contents lists available at ScienceDirect

Lung Cancer





Research Paper

Association between lorlatinib blood concentration and adverse events and clinical impact of dose modification

Yukiko Shimoda Igawa a, Tatsuya Yoshida a,b,*, Reiko Makihara c, Masahiro Torasawa a,

CONCLUSIONS: We suggest that **lorlatinib** be administered with **dose monitoring** to ensure **safe** and **effective treatment**, especially for **high-grade AEs**

Gracias

lola.isla@gmail.com

@Isla_dolores