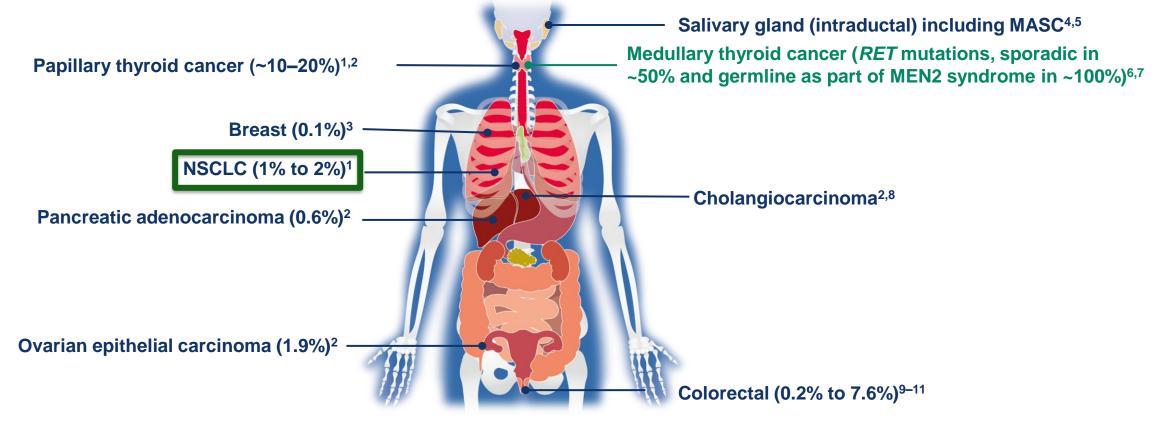

RET fusion-positive NSCLC

Luis Paz-Ares
Hospital Universitario 12 de Octubre

Disclosures

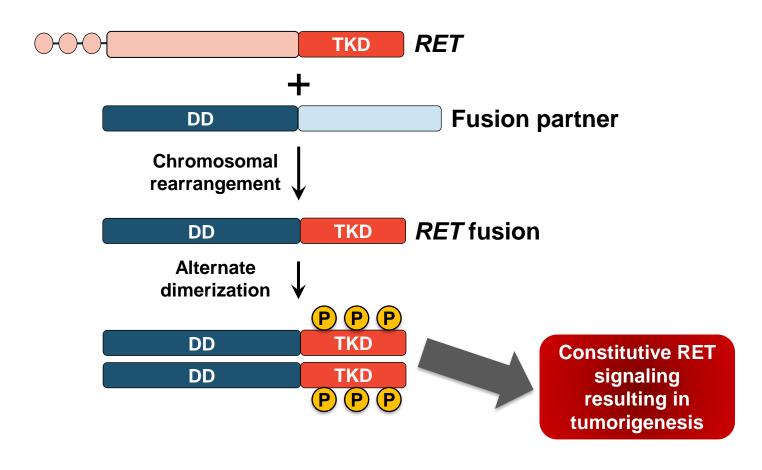
- Honoraria (self): Amgen, AstraZeneca, Bayer, Blueprint Medicines, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Eli Lilly, Ipsen, Merck, Merck Sharp & Dohme, Mirati, Novartis, Pfizer, Pharmamar, Roche, Sanofi, Servier, Sysmex, Takeda
- Speaker Bureau / Expert testimony: AstraZeneca, Bristol Myers Squibb, Eli Lilly, Merck Sharp & Dohme, Roche
- Leadership role: Altum Sequencing, Stab therapeutics
- Research grant / Funding (self): AstraZeneca, Bristol Myers Squibb, Merck
 Sharp & Dohme
- Spouse / Financial dependant: AAA, Advanz Pharma, Bayer, HMP, Ipsen,
 Merck, Merck, Sharp & Dohme, Midatech Pharma, Novartis, Pfizer, PharmaMar,
 Pierre Fabre, Roche, Sanofi, Servier


Current Treatment Paradigm for Molecular Biomarker Positive Advanced NSCLC

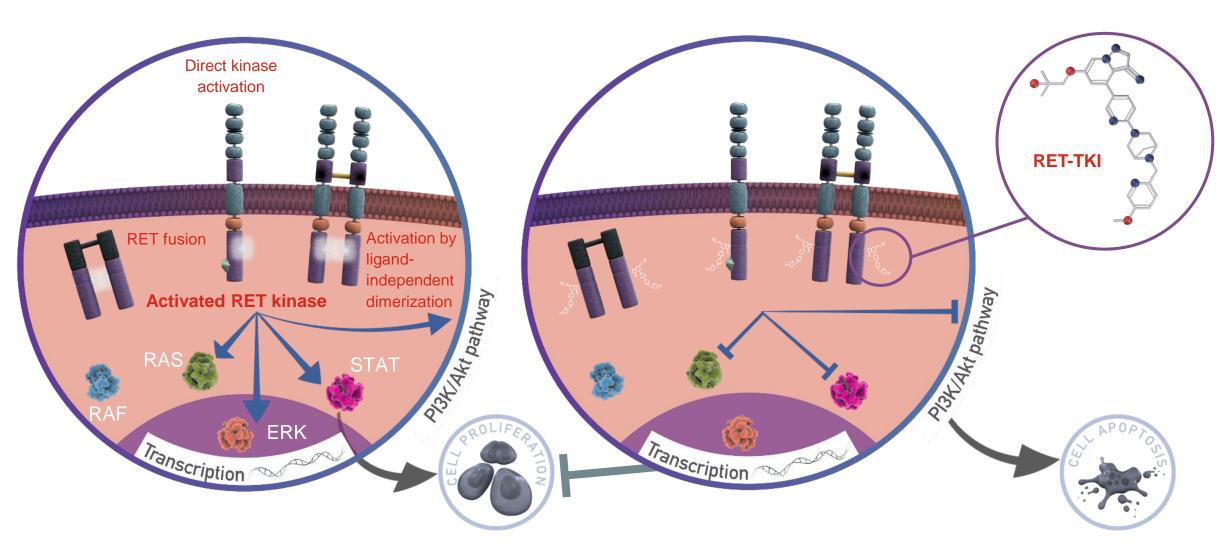
^{*}Afatinib, dacomitinib, erlotinib, gefitinib, osimertinib approved for EGFR exon19del, exon 21 L858R; afatinib for EGFR G719X, S768I, L861Q.

[†]Capmatinib is not currently approved in Europe. ‡Following prior treatment with immunotherapy and/or platinum-based chemotherapy.

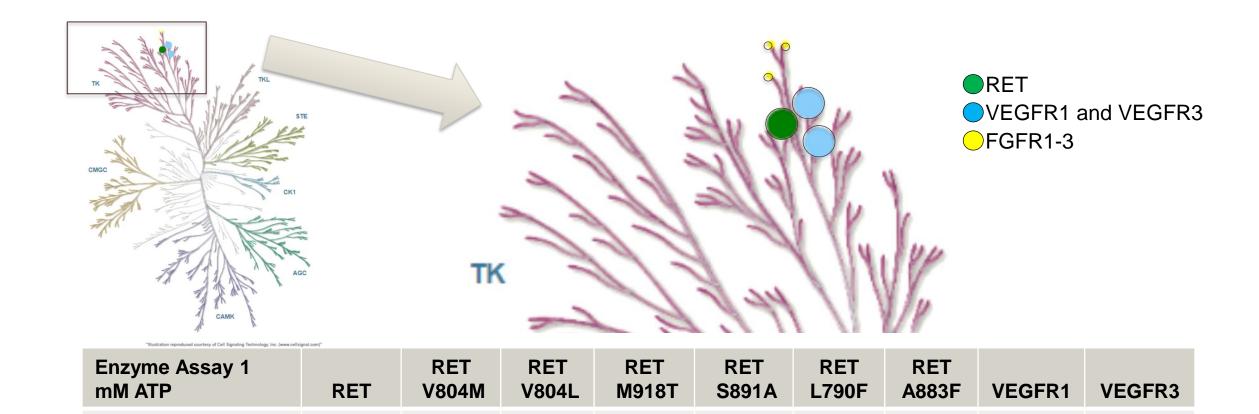
RET Fusions are Oncogenic Drivers in Multiple Tumor Types


- Standard therapies provide limited benefit for patients with *RET* fusion-positive tumors^{12–16}
- Outcomes with immunotherapies in patients with RET fusion-positive NSCLC are poor^{17–20}

Pathobiology of *RET* in NSCLC


Common Fusion Partners¹

RET Fusions²



Mechanism of Action of RET-TKIs

Akt, protein kinase B; ERK, extracellular signal-regulated kinase; PI3K; phosphoinositide 3-kinase; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma; RET, rearranged during transfection; STAT, signal transducer and activator of transcription.

Selpercatinib is a Highly Selective RET Inhibitor

Cellular Assay	KIF5B-RET	VEGFR2	VEGFR3	FGFR1	FGFR2
IC50 (nM)	3.3-4	683	33	248-1286	242

1.5-28.7

32.9

0.92

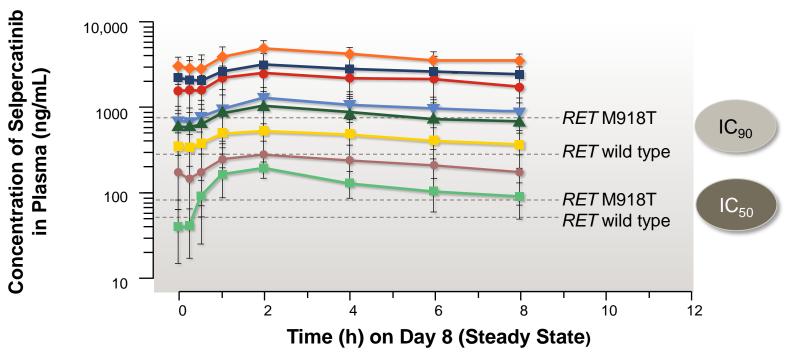
30.5

IC50 (nM)

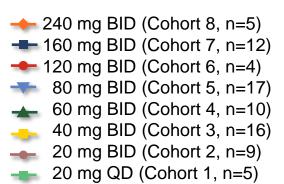
2.8-17.3

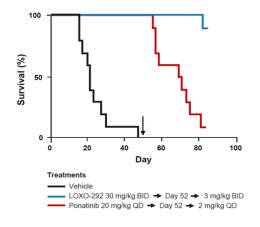
6.4-36.7

27.7

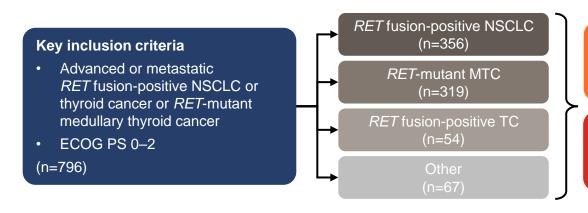

11.9

67.8


Selpercatinib is a Potent RET Inhibitor


LIBRETTO-001: Phase 1 Pharmacokinetics

Patient Plasma Exposures Exceeded IC₉₀ Targets



Horizontal lines represent the plasma level at which the unbound selpercatinib concentration corresponds to IC₅₀ or IC₉₀ of the indicated target based on cellular assays

LIBRETTO-001: Selpercatinib

Dose escalation Selpercatinib 20 mg/day to 240 mg BID

Dose expansion Selpercatinib 160 mg BID q4w

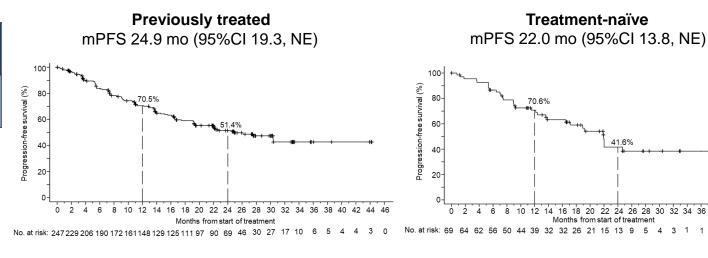
RET fusion-positive NSCLC (n=355)

[Treatment naïve, n=69 Prior platinum-based chemotherapy, n=247 Prior other systemic therapy, n=19 Non-measurable disease, n=20]

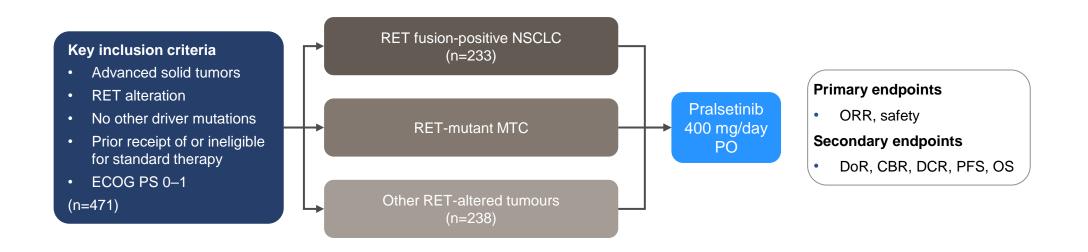
Primary endpoint

ORR (RECIST v1.1, IRC)

Secondary endpoints


• DoR, PFS, HRQoL, safety

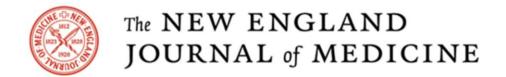
Objective response rate


15 June 2021 cut-off	Previously treated (n=247)
ORR, n (%)	151 (61.1)
[95%CI]	[54.7, 67.2]

Treatment-na (n=69)	ïve
58 (84.1) [73.3, 91.8]	

Progression-free survival

ARROW: Pralsetinib



Objective response rate¹

22 May 2020 cut-off	Previously treated (n=136)	Treatment-naïve (n=75)
ORR, n (%) [95%CI]	80 (58.8) [50.1, 67.2]	54 (72.0) [60.4, 81.8]
BOR, n (%)		
CR	7 (5.1)	4 (5.3)
PR	73 (53.7)	50 (66.7)

Progression-free survival²

22 May 2020 cut-off	Previously treated (n=136)	Treatment-naïve (n=75)
mPFS, months (95%CI)	16.5 (10.5, 24.1)	13.0 (9.1, NR)

ORIGINAL ARTICLE

First-Line Selpercatinib or Chemotherapy and Pembrolizumab in *RET* Fusion–Positive NSCLC

Caicun Zhou, M.D., Ph.D., Benjamin Solomon, M.B., B.S., Ph.D.,
Herbert H. Loong, M.B., B.S., Keunchil Park, M.D., Ph.D., Maurice Pérol, M.D.,
Edurne Arriola, M.D., Ph.D., Silvia Novello, M.D., Ph.D.,
Baohui Han, M.D., Ph.D., Jianying Zhou, M.D., Andrea Ardizzoni, M.D.,
M. Perez Mak, M.D., Ph.D., Fernando C. Santini, M.D., Yasir Y. Elamin, M.D.,
Alexander Drilon, M.D., Jürgen Wolf, M.D., Nalin Payakachat, Ph.D.,
Minji K. Uh, Ph.D., Deborah Rajakumar, B.D.S., M.Sc.,
Hongmei Han, M.S., M.Ap.St., Tarun Puri, M.D., Victoria Soldatenkova, M.S.,
A. Bence Lin, Ph.D., Boris K. Lin, M.D., Ph.D., and Koichi Goto, M.D., Ph.D.,
for the LIBRETTO-431 Trial Investigators*

LIBRETTO-431 phase 3 open-label study design

Key Eligibility Criteria

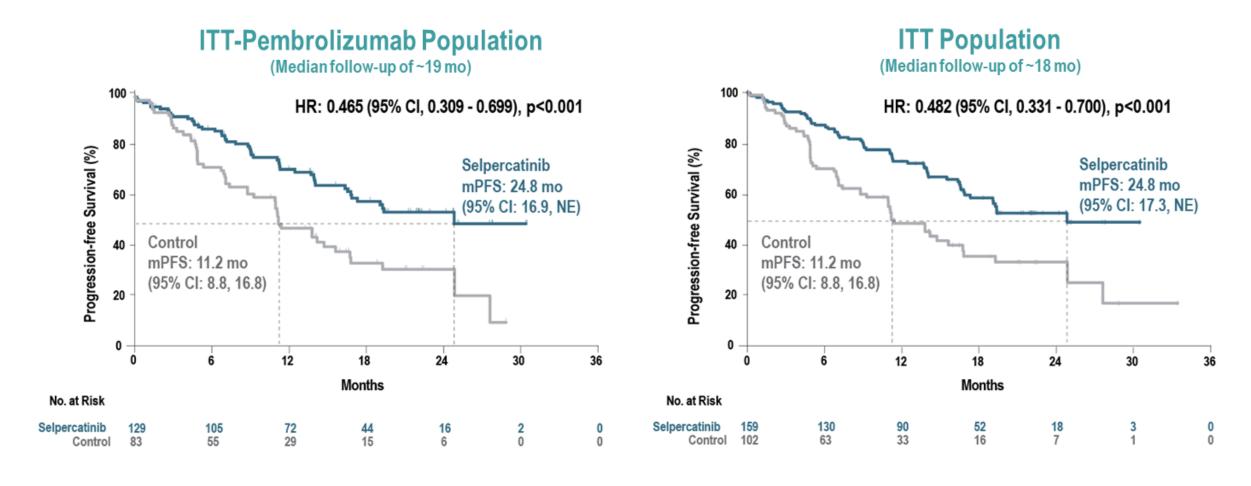
- Stage IIIB-IIIC¹, IV non-squamous NSCLC
- No prior systemic therapy for metastatic disease
- RET fusion identified via NGS or PCR
- ECOG PS 0-2
- Symptomatic CNS metastases excluded

Stratification factors:

- Geography (East Asian vs. non-East Asian)
- Brain metastases (present vs. absent/unknown)²
- Investigator's choice of treatment with pembrolizumab

Gated Primary Endpoints: PFS by blinded independent central review (BICR) in ITT-Pembrolizumab⁴ and ITT population Secondary Endpoints:

- Efficacy ([OS, ORR, DOR], CNS [ORR, DOR, time to progression]⁵)
- Safety
- Patient Reported Outcomes (NSCLC-SAQ [tertiary endpoint EORTC QLQ-C30])


¹ Not suitable for radical surgery or radiation therapy; ² Investigator assessed

³ The initial randomization ratio was 1:1, but amended to 2:1

⁴ITT-Pembrolizumab are patients stratified with investigator intent to receive chemotherapy with pembrolizumab and per protocol had to be at least 80% of the ITT population

⁵ Baseline and longitudinal intracranial scans were required for all patients following an amendment. Prior to the amendment, longitudinal intracranial scans were required if patients had known CNS metastases at baseline

Progression-free survival (PFS) assessed by BICR

The primary endpoints were met, as selpercatinib resulted in a statistically significant improvement in PFS in both pre-specified populations

Consistent PFS Benefit by BICR – All Preplanned Subgroups

					■	
	Selpe	ercatinib	Co	ntrol	Favors Selpercatinib	Favors Control
PFS per BICR	No.	Events	No.	Events		HR (95% CI)
Overall	129	49	83	49	H=4	0.488 (0.327, 0.726)
Age						
<65	82	32	49	32	H-1	0.472 (0.288, 0.774)
≥65	47	17	34	17	—	0.521 (0.265, 1.025
Sex						
Female	65	27	48	27	⊢•	0.599 (0.351, 1.023
Male	64	22	35	22		0.386 (0.212, 0.702
Race						I
Asian	76	25	41	24	⊢	0.418 (0.238, 0.734
Non-Asian	53	24	38	22	⊢- -	0.575 (0.319, 1.034
Region						
East Asian	75	25	41	24	⊢	0.422 (0.241, 0.741
Non-East Asian	54	24	42	25	⊢-	0.554 (0.314, 0.978
Smoking status						I
Never	85	34	59	36	⊢• -1	0.476 (0.297, 0.763
Former/Current	44	15	24	13	—	0.536 (0.254, 1.131
ECOG PS						I
0 to 1	126	47	79	46	H=1	0.500 (0.332, 0.752
2	3	2	4	3		0.318 (0.037, 2.761
						1
				0.01	1.	0 3.0

	Selp	ercatinib	Co	ntrol	Favors Selpercatinib Favors (Control
PFS per BICR		Events	No.	Events		HR (95% CI)
Disease stage					i	
Stage III	7	2	7	4	-	0.517 (0.097, 2.761
Stage IVA	51	16	35	15		0.583 (0.287, 1.186
Stage IVB	71	31	41	30	⊢	0.442 (0.267, 0.732
Brain metastases	3					
No/unknown	104	35	65	36	⊢ 1	0.478 (0.299, 0.762
Yes	25	14	18	13		0.508 (0.234, 1.105
Liv er metastases	3				i	
No	109	38	65	35	⊢•	0.505 (0.318, 0.801
Yes	19	11	17	13	—	0.528 (0.235, 1.189
RET fusion partne	er				I	
CCDC6	13	1	8	3	-	0.161 (0.019, 1.380
KIF5B	54	29	41	28	⊢	0.454 (0.267, 0.774
Other	4	1	3	2	-	0.066 (0.002, 2.902
Positive ¹	58	18	31	16	 1	0.648 (0.329, 1.275
PD-L1 expression	n				1	
Positive	55	23	39	27	⊢	0.460 (0.262, 0.805
Negative	31	12	12	4	─	0.853 (0.268, 2.716
Unknown	43	14	32	18		0.483 (0.240, 0.974
				0.01	1.0	3.0

Systemic ORR, DOR, OS and Intracranial ORR and DOR

Systemic Outcomes

	Selpercatinib N= 129	Control N= 83
ORR, %	83.7	65.1
Median DOR, mo (95% Cl)	24.2 (17.9, NE)	11.5 (9.7, 23.3)

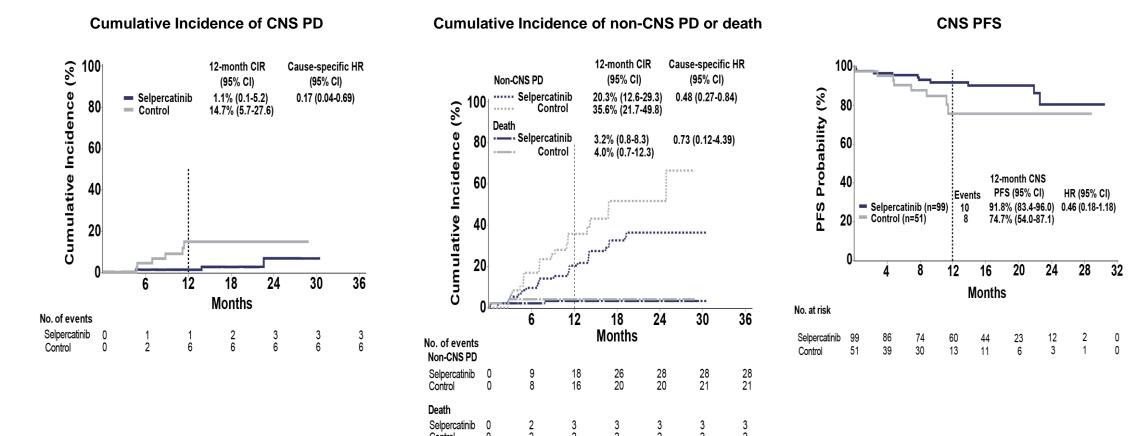
Overall Survival immature (censoring rate ~80%) and confounded by crossover (75% effective rate)¹: HR 0.961 (95% CI: 0.503, 1.835)

Overall response rate by RECIST 1.1 was higher and responses were more durable with selpercatinib

Intracranial Outcomes²

	Selpercatinib	Control
	N= 17	N= 12
Intracranial ORR, %	82.4	58.3
Intracranial CR, %	35.3	16.7
12-mo Intracranial DOR Rate, % (95% CI)	76.0 (42.2, 91.6)	62.5 (14.2, 89.3)
Median Intracranial PFS, mo (95% CI)	16.1 (8.8, NE)	10.4 (3.8, NE)

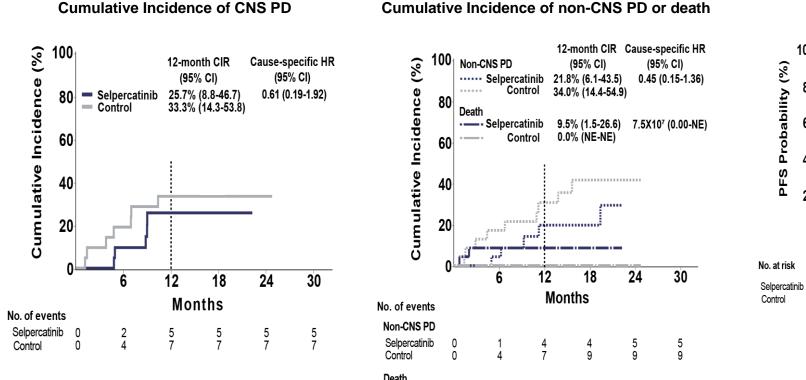
In patients with measurable CNS disease at baseline, selpercatinib demonstrated improved outcomes in:

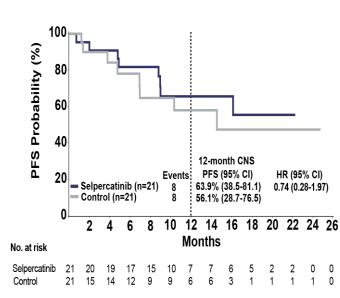

- intracranial response rate by RECIST 1.1 including complete responses, and DOR
- intracranial PFS

¹ Effective crossover rate: patients who discontinued from control treatment and received a selective RET inhibitor on or off study

² In patients with measurable CNS disease at baseline.

Intracranial Outcomes with/without baseline CNS metastasis


Cumulative incidence rates and intracranial PFS in the CNS-pembro population without baseline CNS metastases

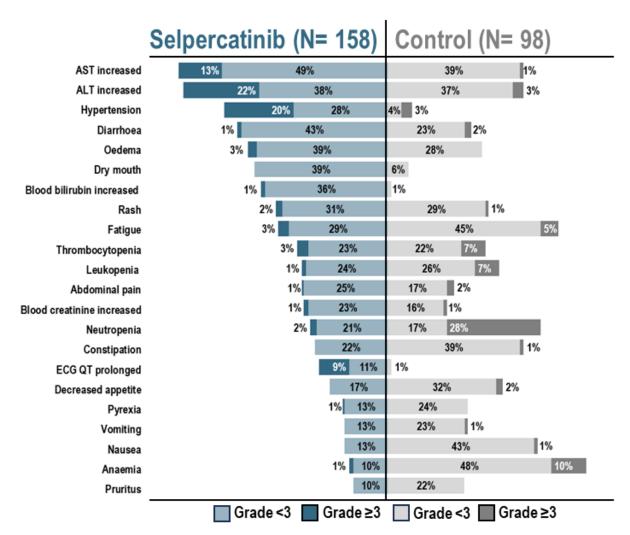


In patients without baseline CNS disease, the 12-mo CIR of CNS PD was 1.1% with selpercatinib vs 14.7% with control (cause-specific HR: 0.17 [95%CI: 0.04-0.69]).

Intracranial Outcomes with/without baseline CNS metastasis

Cumulative incidence rates and intracranial PFS in CNS-pembro population with baseline CNS metastases

CNS PFS

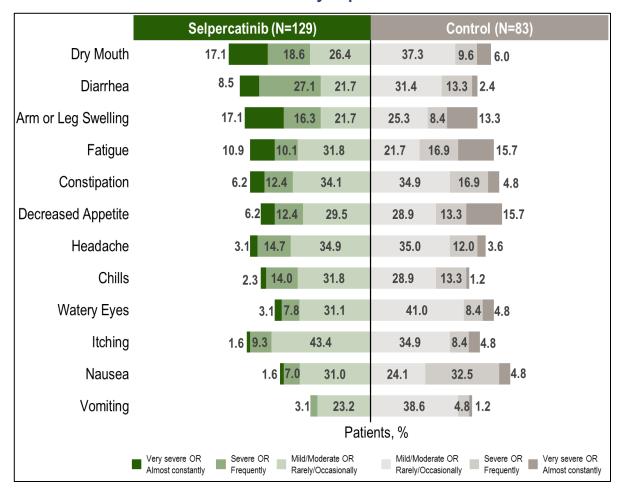

In patients with baseline CNS disease, the 12-mo CIR of CNS PD was 25.7% with selpercatinib vs 33.3% with control (cause-specific HR:0.61 [95%CI:0.19-1.92])

Outcome according to fusion partner

	PFS	ORR
Factors	Hazard Ratio (95% CI)	Odds Ratio (95% CI)
Age (< 65 years vs ≥ 65 years)	1.10 (0.82-1.48)	0.99 (0.61-1.58)
Sex (Male vs Female)	0.96 (0.71-1.30)	1.44 (0.90-2.33)
Region of Enrollment (East Asian vs non-East Asian)	0.99 (0.74-1.33)	0.78 (0.49-1.24)
Smoking Status (Never smoker vs Current/Former smoker)	1.12 (0.81-1.55)	0.65 (0.39-1.11)
ECOG PS (0 vs Other)	0.62 (0.46-0.85)	1.65 (1.00-2.71)
Liver Metastases (Yes vs No)	0.51 (0.38-0.67)	1.37 (0.86-2.19)
RET Fusion (KIF5B vs CCDC6)	0.43 (0.29-0.64)	2.67 (1.41-5.03)

	mPFS, mo		ORR, [n/N]		mDOR, mo
	(95%CI)		%		
Fusion Partner			(95%CI)		
	Overall N=415	Overall N=415	Prior Treatment n=263	Treatment Naïve n=152	Overall N=415
		[194/297]	[96/179]	[98/118]	
KIF5B-RET	19.4	65.3	53.6	83.1	20.3
	(17.1-22.7)	(59.6-70.7)	(46.0-61.1)	(75.0-89.3)	(17.5-23.9)
		[73/88]	[47/61]	[26/27]	
CCDC6-RET	NR	83.0	77.0	96.3	NR
	(33.0-NR)	(73.4-90.1)	(64.5-86.8)	(81.0-99.9)	(28.5-NR)
		[16/30]	[10/23]	[6/7]	
OTHER-RET	16.9	53.3	43.5	85.7	17.6
	(7.5-NR)	(34.3-71.7)	(23.2-65.5)	(42.1-99.6)	(5.6-NR)

Safety

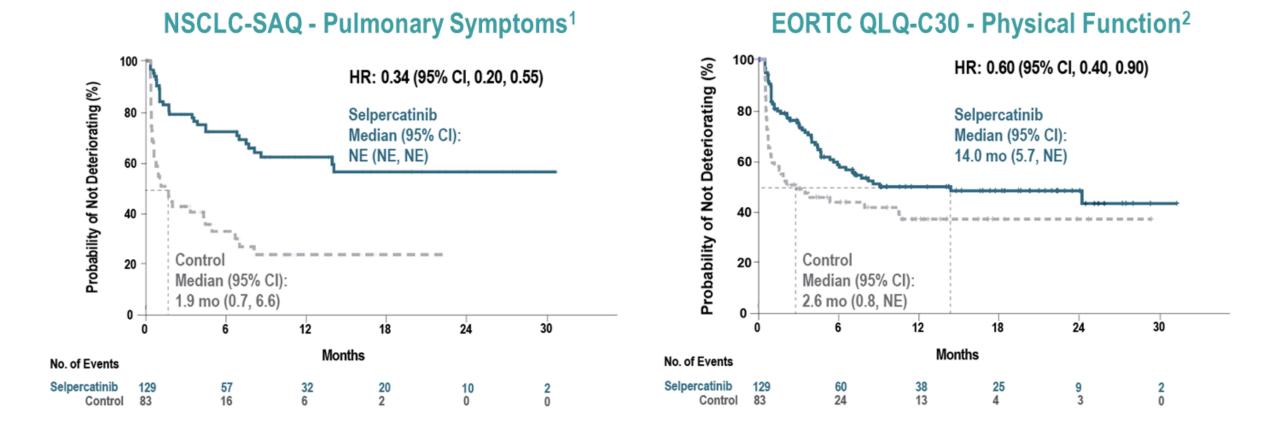

Any grade treatment-emergent adverse events (TEAEs) occurring in ≥20% of patients in either study arm

- Median time on selpercatinib was approximately 70% longer than control (16.7 vs 9.8 months)
- TEAEs observed with selpercatinib were generally consistent with those previously reported, and the majority were managed with dose modifications

	Selpercatinib N= 158	Control N= 98
Median time on treatment, months ± SD	16.7 ± 8.3	9.8 ± 7.2
Any AE, n (%)	158 (100.0)	97 (99.0)
AE Grade ≥3	111 (70.3)	56 (57.1)
Deaths due to AE, n (%)	7 (4.4)	0
Related AE (malnutrition and sudden death)	2 (1.3)	0
AEs leading to discontinuation, n (%)	16 (10.1)	2 (2.0)
AEs leading to any dose adjustment, n (%)	123 (77.8)	74 (75.5)
AEs leading to dose reduction	81 (51.3)	28 (28.6)

Patient Reported Adverse Events

PRO-CTCAE: Symptomatic AEs

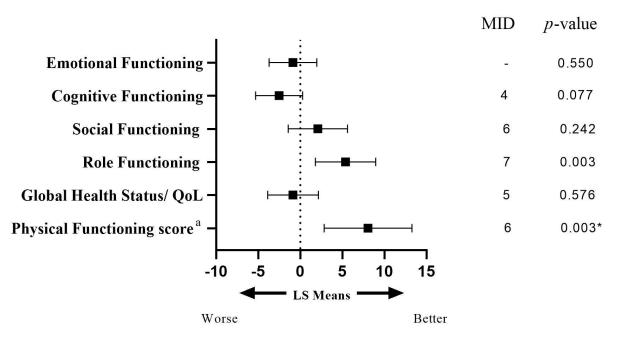


PRO-CTCAE, Patient-Reported Outcomes of Common Terminology Criteria for Adverse Events, data shown as Baseline Adjusted Worst Scores during on-treatment study period

- Dry mouth, diarrhea, and arm or leg swelling were reported at a higher level of severity or frequency in the selpercatinib arm.
- Fatigue, decreased appetite, and nausea were reported at a higher level of severity or frequency in the control arm.

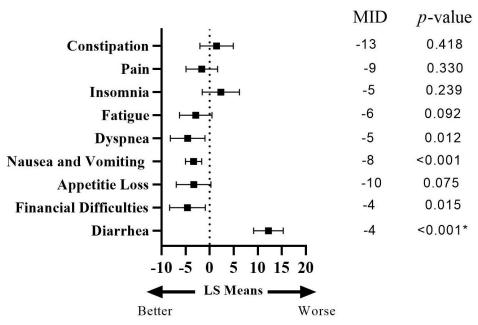
Data shown are from the ITT-Pembrolizumab population

Time to deterioration of pulmonary symptoms and physical function


Selpercatinib delayed time to deterioration of pulmonary symptoms and overall physical function

¹Clinically meaningful change for deterioration of pulmonary symptoms using a ≥2 points increase in NSCLC-SAQ total scores (range from 0 [no symptoms] to 20 [worst symptoms]) from baseline ²Clinically meaningful change for deterioration of physical function using a ≥10 points decrease in QLQ-C30 physical functioning scores (range from 0 to 100 [best possible physical function]) from baseline

Quality of life

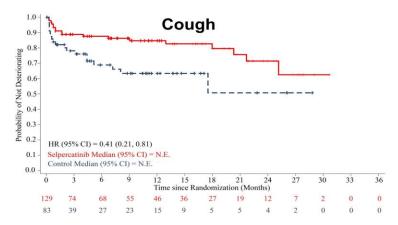

Difference in HRQoL for selpercatinib compared to control from baseline to year 1 as measured by EORTC QLQ-C30

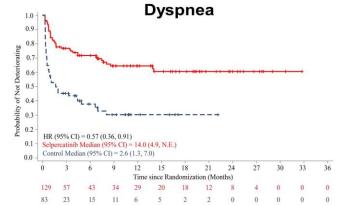
Higher score → Better functioning

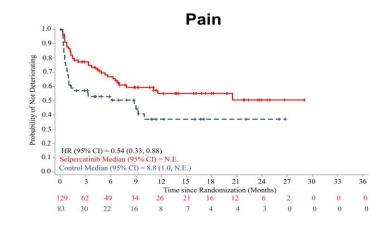
Physical functioning with selpercatinib was clinically and statistically improved from baseline at 1 year, compared to the control group.

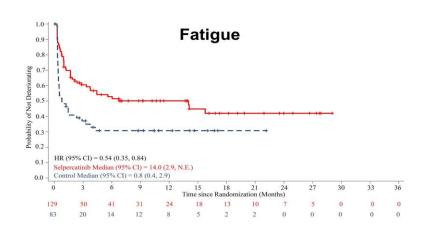
Higher score → Worse symptoms

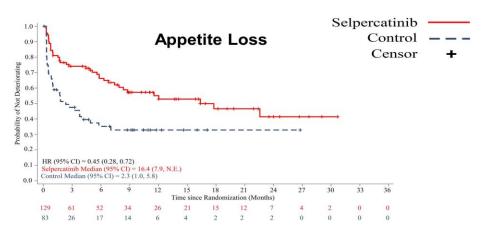
Diarrhea was clinically and statistically worse in the selpercatinib arm compared to the control arm.

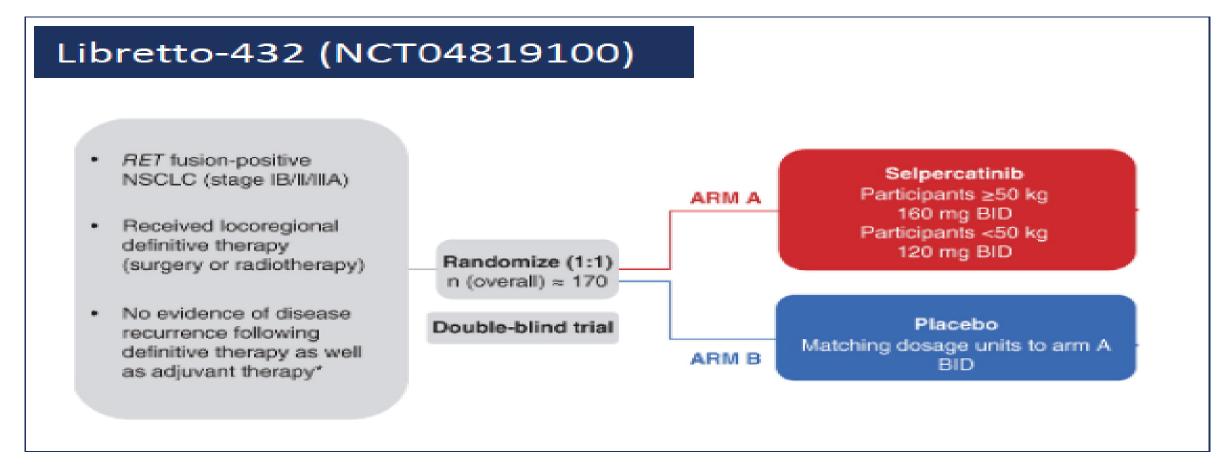

^{*}Clinical and statistical significance. a The estimated score difference for the physical functioning score was from a growth curve model analysis at 49 weeks.

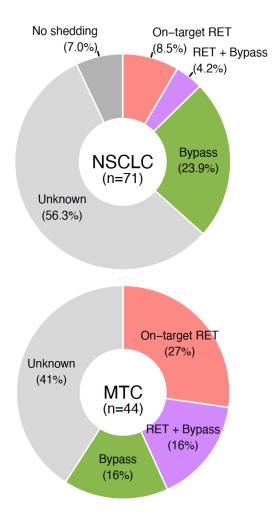

Dyspnea improved but did not reach the clinically meaningful threshold. Role function improved but did not reach the clinically meaningful threshold


EORTC QLQ-C30=European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30; GHS/QoL = Global Health Status/Quality of Life; LS Means = least-square means; MID=meaningful important difference; NSCLC-SAQ=NSCLC Symptom Assessment Questionnaire


Time to confirmed deterioration


Selpercatinib significantly (p <.05) delayed time to confirmed deterioration* of all individual symptoms



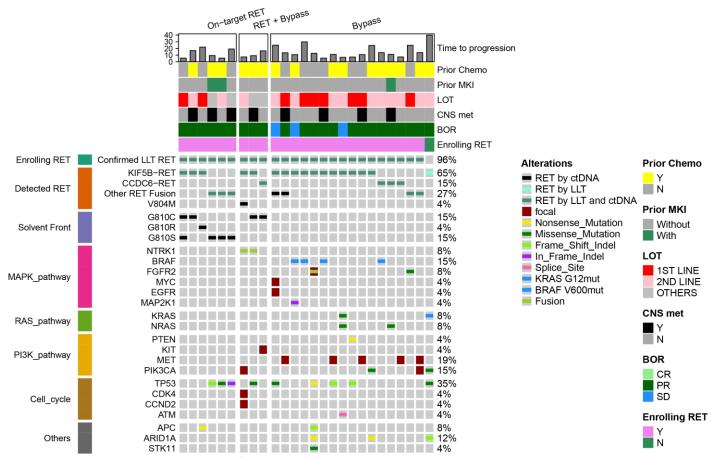


Early stage RET driven NSCLC

Stage IB (3 cm)-IIIA (8th edition) TKI for 3 years (as Adaura) No chemotherapy (as Alina)

Acquired mechanism of resistance to Selpercatinib

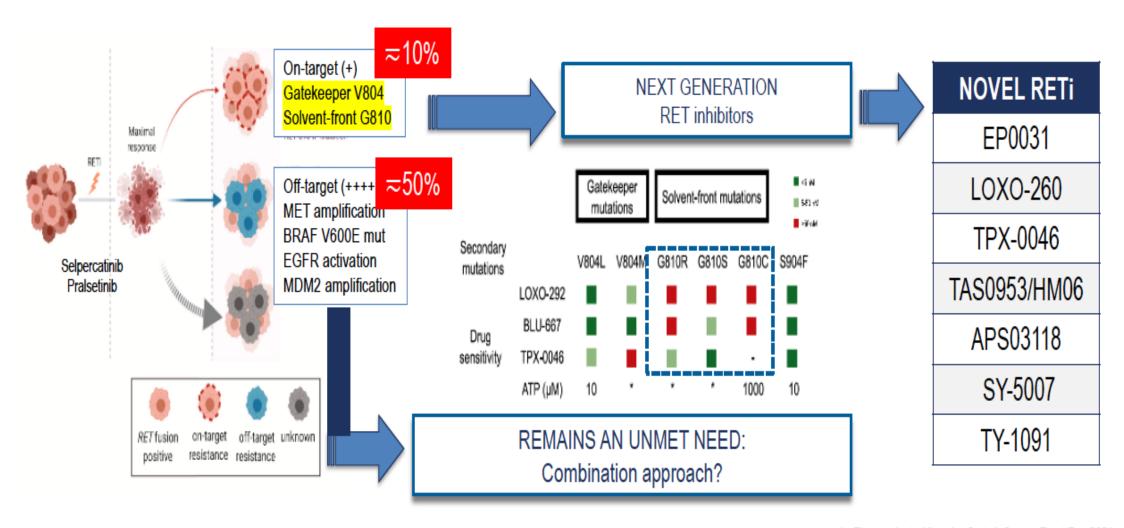
	NSCLC N (%)	MTC N (%)	All patients N (%)
Resistance mechanism	26 (37)	26 (59)	52 (45)
Unknown/No shedding*	45 (63)	18 (41)	63 (55)
On-target	9 (13)	19 (43)	28 (24)
RET Solvent Front G810C/S/R	8	16	24
<i>RET</i> V804M/L**	1	8	9
RET V804M/L** and G810C/S	0	5	5
Bypass	20 (28)	14 (32)	34 (30)
BRAFV600E/Amplification	4	5	9
KRAS G12D/R	1	4	5
MET Amplification	5	2	7
NTRK1 fusion	2	1	3
Other***	8	2	10

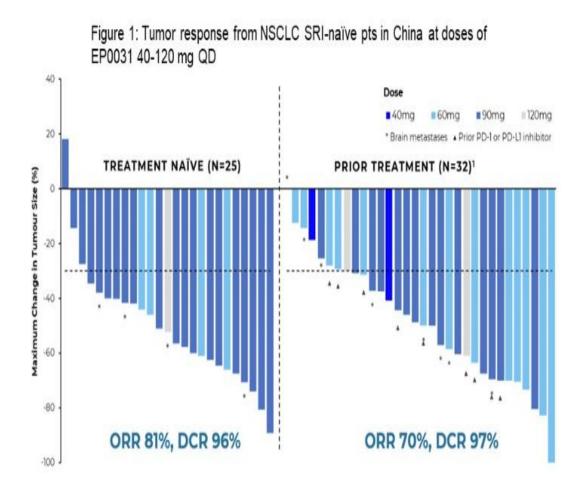

^{*}patients with no oncogenic alterations detected at baseline.

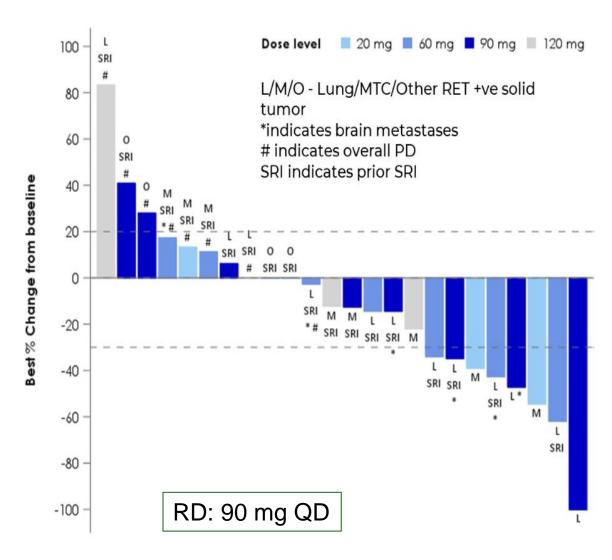
 On-target resistance mechanisms were identified more frequently in MTC vs NSCLC patients, 43% vs 13%, respectively

^{**1} NSCLC and 1 MTC patient acquired *RET* V804M alone; 4 MTC patients had clonal expansion of *RET* V804M/L with other acquired on-target *RET* alterations; 3 MTC patients acquired *RET* V804M with other acquired on-target *RET* alterations; ****EGFR/MYC amplification, *FGFR*2 N82S/ P253L/amplification, *KIT* amplification, *KRAS* Q61H, *PIK3CA* E545K, *NRAS* Q61K/L.

Mechanisms of resistance were identified in 37% (26/71) of NSCLC patients


 Mechanisms of resistance includes both acquired variants at progression and primary variants with clonal expansion at progression


- RET solvent front mutation (12%) was the most prevalent on-target RET alteration:
 - o G810C/S/R was found in 11% (8/71)
 - V804M/L was found in 1% (1/71)
- 17% (12/71) had bypass alterations in MAPK/RAS pathway
 - MET amplification was found in 7% (5/71)
 - BRAF V600E was found in 6% (4/71)
 - NTRK1 fusion was found in 3% (2/71)
 - KRAS G12R was found in 1% (1/71)


B Solomon, et al.; ESMO 2024

RET Resistance Novel Gen RET inhibitors do not cover all needs

EP0031 – Phase I Trial

Gracias Ipazaresr@seom.org