

Vigo, 20 y 21 de febrero de 2025



# Anticuerpos biespecíficos Papel en cáncer de mama

Dra. Elena Galve
Servicio Oncología Médica,
Hospital Universitario Basurto . OSI Bilbao-Basurto

Vigo, 20 y 21 de febrero de 2025

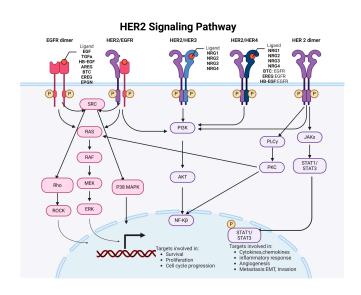
#### Conflictos de interés

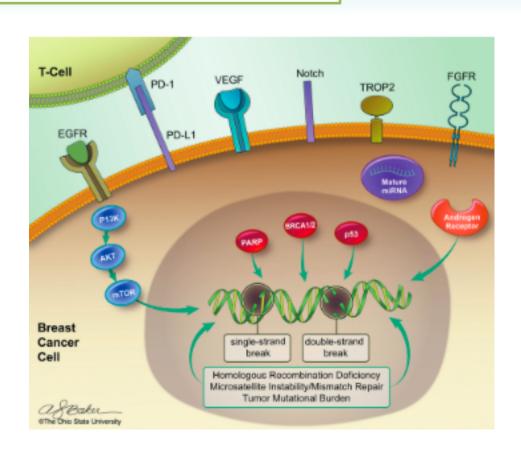
Trabajo en Osakidetza /Servicio Vasco de Salud

He colaborado como ponente/asesor: Pfizer, Novartis, Lilly, Pierre Fabre, Roche, Gilead, Astra Zeneca, Daiichi-Sankyo, GSK, MSD.

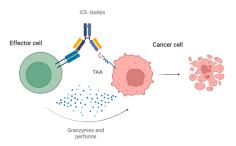
He recibido financiación para formación médica por parte de: Pfizer, Novartis, Lilly, Daiichi-Sankyo, Astra Zeneca, Gilead, Roche




# BsAb estudios preclínicos cáncer de mama


| BsAbs                          | BsAbs Targets                                                                                                                                                                      | Details of study                                                                    | Outcomes                                                                                                                                                                                                                                                                                                               |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HB-32                          | DLL4 and VEGF Derived from Bevacizumab and H3L2 was use as the parental mAb The anti-DLL4 antibody (H3L2) was generated using the hybridoma technique and humanized transformation | In vitro MDA-MB-231 cells In vivo BALB/c nude mice                                  | Effectively inhibited the proliferation migration and tube formation of HUVEC which are involved in angiogenesis     HB-32 inhibited the proliferation of BCa cells and induces tumor cell apoptosis more effectively than treatment with an anti-VEGF antibody or an anti-DLI4 antibody alone                         |
| HER2xPRLR<br>bispecific<br>ADC | HER2 and PRLR A fully human mAb to human PRLR and "in-house trastuzumab"                                                                                                           | In vitro<br>HEK293 cells                                                            | -Significantly enhanced the degradation of HER2 and the cell-killing activity of a noncompeting HER2 ADC—in BCa cells that coexpressed HER2 and PRLR                                                                                                                                                                   |
| PRLR-DbsAb                     | PRLR and CD3                                                                                                                                                                       | In vitro MDA-MB-231 MCF-7 and SKBR-3 cells In vivo Female NOD/ SCID mice            | Activated T cells and stimulated the release of antitumor cytokines Showed significant inhibition of tumor growth and increased survival compared to traditional mAb treatment                                                                                                                                         |
| MDX-21                         | HER2 and FcyRI (CD64)                                                                                                                                                              | In vitro<br>SK-BR-3 BT-20<br>T-47D                                                  | Induce phagocytosis and cytolysis of BCa cells by human MDMs Induced ADCP and ADCC Combining MDX-H210 and G-CSF did not demonstrate significant therapeutic efficacy regarding clinical responses Isolated neutrophils from patients undergoing G-CSF treatment displayed high cytotoxicity in the presence of MDX-210 |
| MesobsFab                      | Mesothelin and FcγRIII (CD16)                                                                                                                                                      | In vitro BT-474 HCC1806 SK- BR-3 and MDA-MB- 231 In vivo Humanized xenograft models | Facilitated the recruitment and infiltration of NK cells into tumor spheroids     Induced ADCC     Elicited dose-dependent cell-mediated cytotoxicity against mesothelin-positive tumor cells     Induced cytokine secretion     Reduced cell invasiveness                                                             |
| HER2bsFab                      | HER2 and FcγRIII (CD16)<br>Fab-like BsAb                                                                                                                                           | In vitro<br>SK-OV-3 SK-BR-3<br>BT-474 MCF-7                                         | *Effectively inhibited the growth of HER2-high tumors by recruiting resident effector cells expressing mouse Fc/RIII and IV     *Showed superior inhibition of HER2-low tumor growth compared to trastuzumab                                                                                                           |
| BsAb                           | HER2 and FcγRIII (CD16)<br>A trivalent anti-erbB2/anti-<br>CD16 BsAb                                                                                                               | In vitro<br>SKBR3 cells                                                             | *Activated NK cells to enhance anti-tumor immune responses                                                                                                                                                                                                                                                             |

| BsAbs                        | BsAbs Targets                                                                        | Details of study                                                                                                   | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $TP_L$                       | HER2 epitops<br>BsAb Sources: trastuzumab<br>and pertuzumab                          | In vitro BT-474 SK-BR-3 HCC-1954 MDA-MB- 231 MDA-MB-468 and MCF-7 In vivo female BALB/c mice                       | -Superior blocking action against HER2 heterodimerization compared to the combination of trasturumab and pertuzumab -Effectively inhibits HER2 signaling in trasturumab-resistant BCa cell lines -Outperforms trasturumab plus pertuzumab in inhibiting the growth of trasturumab-resistant BCa cell lines -Eradicates established trasturumab-resistant tumors in mice                                                                                           |
| p95HER2-<br>TCB              | P95HER2 and CD3c                                                                     | In vitro MCF7 MCF10A Jurkat cells In vivo Humanized xenograft models                                               | Potent anti-tumor effects on primary BCas and brain lesions that express p95HER2 -Unlike TCBs targeting HER2 the p95HER2-TCB had no impact on nontransformed cells that do not overexpress HER2                                                                                                                                                                                                                                                                   |
| Four types<br>of BsAbs       | HER2 and CD3<br>IgG-based bsAbs                                                      | In vitro SKBR3 Her2 3 +; MDA MB453 Her2 2 +; MDA MB231 Her2 1 +; MDA MB468 Her2 0 In vivo xenograft NGS mice model | Different valencies of the BsAbs did not significantly impact their effectiveness in fighting tumors Fe domain enhanced the BsAbs' ability to induce cytotoxic activity against the cancer cells The Fc domain also triggered T-cell activation in a manner unrelated to the presence of the target antigen The BsAbs efficiently redirected T cells to effectively eliminate all cancer cells expressing HER2 including those with low levels of HER2 expression |
| BiMAbs                       | HER2/EGFR/CEA/EpCAM and αCD3/αCD28<br>IgG1-Fc based format                           | In vitro<br>MCF-7 HT-1080/FAP                                                                                      | •Effectively activated T cells and induced cytotoxicity only in the presence of tumor cells •Combination treatment with αTAA-αCD3 BiMAb and co-stimulatory αTAA-αCD28 or αTAA-TNEL fusion proteins significantly enhanced T cell activation proliferation activation marker expression cytokine secretion and tumor cytotoxicity                                                                                                                                  |
| HER2-BsAb                    | HER2 and CD3                                                                         | In vitro HCC1954 In vivo BALB-Rag2 <sup>-/-</sup> IL-2R- γc-KO (DKO) mice                                          | Promoted of T-cell infiltration and suppression of tumor growth mainly when used in conjunction with human PBMC or ATC                                                                                                                                                                                                                                                                                                                                            |
| BAb                          | CEA and HER2<br>Murine IgG1 subclass                                                 | In vitro SKOv3-CEA-1B9 In vivo Double-positive tumour-bearing nude mice                                            | •Enhanced tumor localization compared to single-specificity antibodies                                                                                                                                                                                                                                                                                                                                                                                            |
| DF3xH22                      | MUC-1 and HER2                                                                       | In vitro<br>R75-1 MCF-7 BT-20<br>T-47D SKBR-3                                                                      | Mediated the phagocytosis of MUC-1-expressing target cells     Inducing ADCP                                                                                                                                                                                                                                                                                                                                                                                      |
| BsAb; mPEG<br>× HER2         | mPEG and HER2<br>Anti-HER2 scFv and anti-<br>DNS scFv                                | In vitro MCF7/HER2 (HER2 <sup>high</sup> ) and MCF7/neo1 (HER2 <sup>low)</sup> In vivo BALB/c nude mice            | •One-step formulation of PLD using mPEG × HER2 enhanced tumor specificity increased drug internalization and improve the anticancer activity of PLD against HER2-overexpressing and doxorubicin-resistant BCa                                                                                                                                                                                                                                                     |
| TC-BsAb                      | EGFR and HER2                                                                        | In vitro BT-474 and SK-BR-3 In vivo female BALB/c nude mice                                                        | Demonstrated significantly greater potency in inhibiting the growth of BCa cell lines compared to trastuzumab cetuximab and the combination of trastuzumab plus cetuximab                                                                                                                                                                                                                                                                                         |
| Anti-EGFR/<br>VEGFR2<br>BsAb | EGFR and VEGFR2 Cetuximab IgG linked to the scFv of ramucirumab via a glycine linker | In vitro MDA-MB-231 BT-20 MDA-MB-468 BT549 and H5578 T In vivo female athymic                                      | •Inhibited EGFR and VEGFR2 in TNBC cells disrupting the autocrine mechanism inhibited ligand-induced activation of VEGFR2 and blocked the paracrine pathway mediated by VEGF secreted from TNBC cells in endothelial cells                                                                                                                                                                                                                                        |

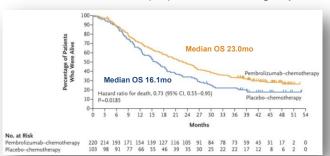

Lan HR, Front Immunol. 2023 Dec 4;14:1266450.

#### BsAb en cáncer de mama: principales líneas

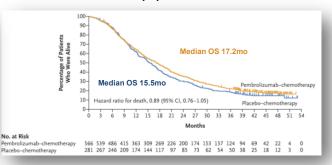




#### The immune cell engagers (ICEs) era in breast cancer




| Trial<br>Identifier | Drug                        | Phase | Engagement    | Cancer type                    | Main AEs                                                                                                      | Outcomes                        | Trial status              |
|---------------------|-----------------------------|-------|---------------|--------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|
| NCT00351858         | Ertumaxomab                 | I     | HER2xCD3      | HER2+ BC                       | G3 Lymphocytopenia (76 %) G3 Elevation of liver enzymes (47 %) 1 severe hypotension and ARDS 1 SIRS and AKI   | 1/15 CR<br>2/15 PR<br>2/15 SD   | Terminated                |
| NCT01569412         | Ertumaxomab                 | I/II  | HER2xCD3      | HER2+ advanced solid tumors    | G3 Fatigue (43 %) G3 Fever (14 %) G3 Pain (21 %) 1 Allergic reaction 1 SIRS                                   | 1/11 PR<br>2/11 SD              | Terminated                |
| NCT03330561         | PRS-343                     | I     | HER2x4–1BB    | HER2+ solid<br>tumors          | IRR (25 %)<br>Nausea (7 %)<br>Arthralgia (5 %)                                                                | 12 % ORR<br>52 % DCR            | Completed                 |
| NCT03922204         | MCLA-145                    | I     | PD-L1x4–1BB   | Advanced solid tumors          | G3 febrile neutropenia<br>ALT/AST elevation<br>Fatigue<br>Myositis                                            | NA                              | Recruiting                |
| NCT04128423         | AMV564<br>+/-Pembrolizumab  | I     | CD33xCD3      | Advanced solid tumors          | Pyrexia, injection site reactions, fatigue,<br>anemia, hypotension, pruritis, chills, and<br>nausea<br>G2 CRS | 1/20 CR                         | Active, not<br>Recruiting |
| NCT02324257         | RO6958688                   | I     | CD3xCEA       | CEA+ advanced solid tumours    | G3 IRR (16.3 %)<br>G3 diarrhea (5 %)                                                                          | 2/36 PR                         | Completed                 |
| NCT02650713         | RO6958688<br>+ Atezolizumab | I     | CD3xCEA       | CEA+ Advanced<br>solid tumours | IRR, Diarrhea, G3 dyspnea, G3 hypoxia G4 colitis G5 respiaratory failure                                      | 2/10 PR                         | Completed                 |
| NCT04501744         | M701                        | I     | CD3xEpCAM     | EpCAM+ tumor cells in ascites  | Hypoproteinemia<br>anemi<br>hypokalemia<br>hyponatremia                                                       | ORR<br>62.5 %;<br>DCR<br>100 %; | Recruiting                |
| NCT04143711         | DF1001                      | I/II  | HER2xCD3xCD16 | HER2+ advanced solid tumors    | infusion related reactions (26 %) asthenia (15 %) fatigue (12 %),                                             | 5 PR<br>22 SD<br>CBR<br>39.7 %  | Recruiting                |


#### CMMTN Inmuno-quimioterapia

• **KEYNOTE (KN)-355:** Demonstration of the efficacy of PD-1 blockade with pembrolizumab in combination with chemotherapy as a first-line for patients with mTNBC with high expression of PD-L1 (CPS ≥ 10).

Overall Survival (OS) in CPS ≥ 10 Subgroup

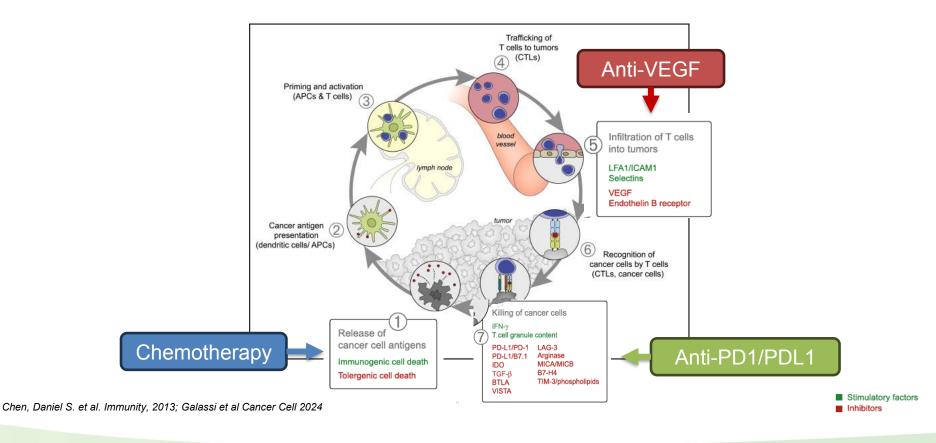


OS in the ITT population - All CPS



|             | ITT – All CPS       |                      |  |  |  |
|-------------|---------------------|----------------------|--|--|--|
|             | Pembro + Chemo      | Placebo + Chemo      |  |  |  |
|             | N = 566             | N = 281              |  |  |  |
| ORR         | 41.0% (36.9 - 45.2) | 35.9% (30.3 - 41.9)  |  |  |  |
| PFS, median | 7.5 mo (6.3 - 7.7)  | 5.6 mo (5.4 - 7.3)   |  |  |  |
| OS, median  | 17.2 mo (15.3-19.0) | 15.5 mo (13.9 -17.2) |  |  |  |




In Pre-KN522 era
60-70% of patients are not candidates
for anti-PD1 in 1st line setting

ITT : Intention to treat

Mo: months

ORR: Objective Response Rate
PFS progression free survival

#### CMMTN Incrementar Inmunogenicidad



#### CMMTN 1ª línea taxanos+ antiVEGF-Anti PD1/PDL1



A Phase Ib/II Study to Assess the Safety and Efficacy of PM8002/BNT327 in Combination with Nab-Paclitaxel for First Line Treatment of Locally Advanced or Metastatic Triple-Negative Breast Cancer

<u>Jiong Wu<sup>1,2</sup>, Jian Zhang<sup>2,3</sup></u>, Zhongsheng Tong<sup>4</sup>, Qingyuan Zhang<sup>5</sup>, Yongsheng Wang<sup>6</sup>,

Qiao Cheng<sup>7</sup>, Xin Chen<sup>8</sup>, Zhihua Li<sup>9</sup>, Yongmei Yin<sup>10</sup>, Yiqun Du<sup>2</sup>, Yanchun Meng<sup>2</sup>

<sup>1</sup>Department of Breast Surgeny, Fudan University Shanghai Cancer Center, Shanghai, China. <sup>2</sup>Department of Oncology, China Shanghai Cancer Center, Shanghai, China. <sup>4</sup>Department of Decad Oncology, China Shanghai Cancer Center, Shanghai, China. <sup>4</sup>Department of Breast Oncology, China Shanghai Cancer Center, Shanghai Cancer China. <sup>4</sup>Department of Breast Oncology, Harbin Medical University Cancer Hospital, Flamin, China. <sup>5</sup>Department of Breast Oncology, Harbin Medical University Cancer Hospital, Holingiang, China. <sup>6</sup>Pereast Disease, Center, Shandong, China. <sup>5</sup>Department of Breast Surgery, Marchain Shandong, China. <sup>6</sup>Department of Breast Surgery, Marchain Shandong, China. <sup>6</sup>Department of Breast Surgery, Marchain Shanghain, China. <sup>6</sup>Department of Breast Surgery, Nanchain Shanghain, China. <sup>6</sup>Department of Grocology, Jiangus, China. <sup>6</sup>Departme



**Presenter: Dr Yanchun Meng** 

Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China.



# Evaluation of the Safety and Efficacy of Ivonescimab in Combination with Chemotherapy as First-line (1L) Treatment for Triple-negative Breast Cancer (TNBC)

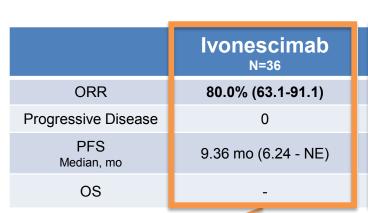
Quchang Ouyang<sup>1</sup>, Xiaojia Wang<sup>2</sup>, Can Tian<sup>1</sup>, Xiying Shao<sup>2</sup>, Jian Huang<sup>2</sup>, Zhanhong Chen<sup>2</sup>, Yongsheng Wang<sup>3</sup>, Tao Sun<sup>4</sup>, Tienan Yi<sup>5</sup>, Xufang Yu<sup>6</sup>, Zhongmin Wang<sup>6</sup>, Baiyong Li<sup>6</sup>, Yu Xia<sup>6</sup>

<sup>1</sup>Breast Medicine Department, Hunan Provincial Tumor Hospital, Changsha, China; <sup>2</sup>Breast Medicine Department, Zhejiang Cancer Hospital, Hangzhou, China; <sup>3</sup>Breast surgery Section One, Affiliated Cancer Hospital of Shandong First Medical University, Jinan, China; <sup>4</sup>Breast Medicine Department, Liaoning Cancer Hospital and Institute, Shenyang, China; <sup>5</sup>Oncology Department, Xiangyang Central Hospital, Xiangyang, China; <sup>6</sup>Akeso Biopharma, Inc., Zhongshan, China

Presenter: Dr. Xiaojia Wang






#### CMMTN 1ª línea taxanos+ antiVEGF-Anti PD1/PDL1

| Ivonescimab                                    | PM8002/BNT327                                                                                                                                                                            |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| anti–PD1 and VEGF-A<br>bispecific antibody     | anti–PDL1 and VEGF-A bispecific antibody                                                                                                                                                 |  |
| Anti-VEGF  Expressed For Antiques              | Anti-VEGF-A (IgG)                                                                                                                                                                        |  |
| Phase II                                       | Phase lb/II                                                                                                                                                                              |  |
| No previous systemic therapy<br>DFI ≥12 months | No previous systemic therapy                                                                                                                                                             |  |
| Ivonescimab<br>+ Paclitaxel or nab-Paclitaxel  | PM8002/BNT327<br>+ nab-Paclitaxel                                                                                                                                                        |  |
| 36                                             | 42                                                                                                                                                                                       |  |
| 6 (16.7%)                                      | 9 (21.4%)                                                                                                                                                                                |  |
| 7 (19.4%) / 1 (2.8%)                           | 16 (38.1%) / 2 (4.8%)                                                                                                                                                                    |  |
| 28 (66.7%)                                     | 20 (55.6%)                                                                                                                                                                               |  |
| No ?                                           | No                                                                                                                                                                                       |  |
|                                                | anti–PD1 and VEGF-A bispecific antibody  Phase II  No previous systemic therapy DFI ≥12 months  Ivonescimab + Paclitaxel or nab-Paclitaxel  36 6 (16.7%) 7 (19.4%) / 1 (2.8%) 28 (66.7%) |  |


Wu J, Wang Q ESMO 24 /SABCS24



#### CMMTN 1ª línea taxanos+ antiVEGF-Anti PD1/PDL1

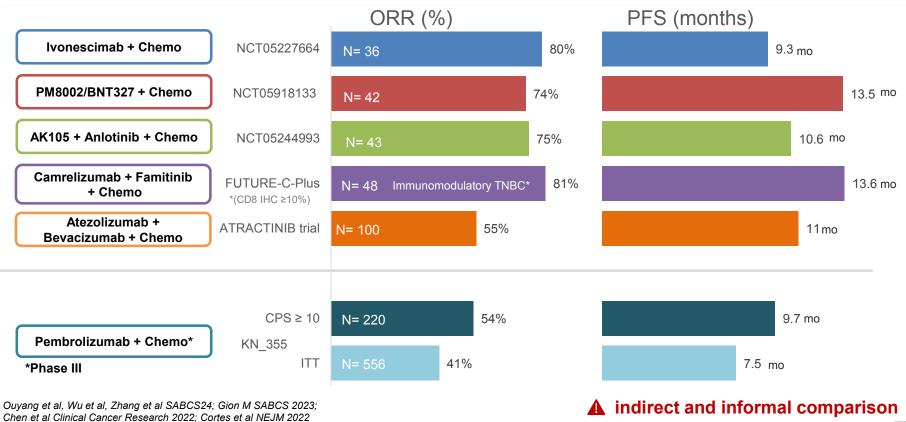


| PM8002/BNT327<br>N=42              |
|------------------------------------|
| 73.8% (58.0, 86.1)                 |
| 2 (4.8%)                           |
| 13.5 mo (9.4 - 19.3)               |
| 12-mo OS rate: 80.8% (65.3 - 89.9) |



|     | PDL1 CPS <1<br>N=17 | PDL1 CPS <10<br>N=29 | PDL1 CPS ≥10<br>N=6 |
|-----|---------------------|----------------------|---------------------|
| ORR | 88.2% (63.6-98.5)   | 79.3% (60.3-92.0)    | 83.3% (35.9-99.6)   |
| PFS | 9.30mo (5.26-NE)    | 9.30mo (5.55-NE)     | NR (5.36-NE)        |

|     | PDL1 CPS<1<br>N=13 | PDL1 1≤CPS<10<br>N=16 | PDL1 CPS≥10<br>N=9 |
|-----|--------------------|-----------------------|--------------------|
| ORR | 76.9% (46.2, 95.0) | 56.3% (29.9, 80.3)    | 100% (66.4, 100)   |
| PFS | 18.1mo (5.7, NR)   | 14.0mo (7.2, NR)      | 10.8mo (5.5, 13.5) |


Significant antitumor activity and low primary resistance ORR and PFS seem independent of PDL1 expression

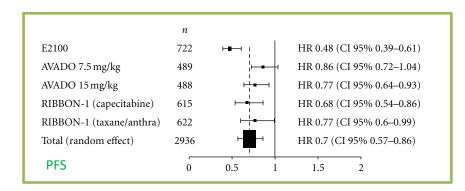


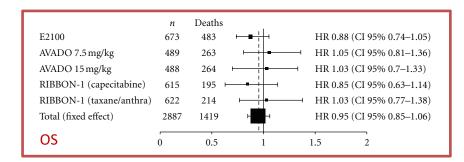
#### CMMTN 1ª línea taxanos+ antiVEGF-Anti PD1/PDL1

|                                                                                 | Ivonescimab<br>(Any/G3-4)<br>N=36 |           | PM8002/BNT327<br>(Any/G3-4)<br>N=42 |           |
|---------------------------------------------------------------------------------|-----------------------------------|-----------|-------------------------------------|-----------|
| TRAEs                                                                           | 100%                              | 50%       | 100%                                | 59.5%     |
| TRAEs leading to discontinuation                                                | 0                                 |           | 9.5%                                |           |
| <ul><li>Hematological</li><li>Neutrophil decreased</li><li>Anemia</li></ul>     | 56%<br>47%                        | 19%<br>3% | 85%<br>76%                          | 20%<br>5% |
| Hepatotoxicity                                                                  | 50%                               | 5.6%      | 28%                                 | <5%       |
| <ul><li>Anti-VEGF toxicities</li><li>Hypertension</li><li>Proteinuria</li></ul> | -                                 | -         | 23.8%<br>64%                        | 5%<br>5%  |
| IrAEs                                                                           | -                                 | -         | 31.0%                               | 9.5%      |
| Death                                                                           |                                   | 0         | 0                                   |           |

#### CMMTN 1º línea antiVEGF-Anti PD1/PDL1: Contexto







#### CMMTN 1ª línea antiVEGF-Anti PD1/PDL1

#### Conclusiones

Datos prometedores Estudios precoces No randomizados

- Necesario confirmar actividad " triplete" → ¿SG?
- ¿Quién necesita "Triplete"?
- Biespecíficos > doble boqueo ?
- ¿Combo ideal? ¿QT? ¿ADC?
- ¿Biomarcadores?
- Otros subtipos tumorales





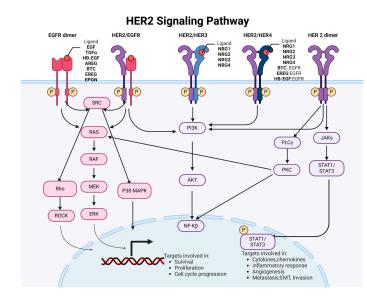
Rossari JCO 2012

#### Recruiting 6



PM8002 or Placebo Plus Nab-Paclitaxel as First-line Treatment in Inoperable Locally Advanced/ Metastatic Triple-negative Breast Cancer

ClinicalTrials.gov ID 1 NCT06419621


Sponsor 1 Biotheus Inc.


**Information provided by 1** Biotheus Inc. (Responsible Party)

Last Update Posted 1 2024-12-03

#### Ca. Mama → BsAb via Her2

| BsAbs                                                                                           | BsAbs Targets                                                                                       | Details of study                                                                                                              | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                | Ref/NCT              |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Combination of G-CSF<br>and MDX-210                                                             | HER2 and FcγRI                                                                                      | In vitro<br>In vivo<br>Phase I clinical trial                                                                                 | •Effectively induced lysis of HER2 overexpressing BCa cell lines   •The therapy was generally well tolerated although some patients experienced fever and short periods of chills which correlated with elevated plasma levels of IL-6 and TNF- $\alpha$ •A decrease in total WBC count and ANC   •Isolated neutrophils from patients undergoing G-CSF treatment displayed high cytotoxicity in the presence of MDX-210 | (127)                |
| Combination of G-CSF<br>and MDX-210                                                             | HER2 and FcγRI                                                                                      | Phase I clinical trial                                                                                                        | •Common side effects included fevers in 19 patients diarrhea in 7 patients and allergic reactions in 3 patients which did not necessitate discontinuation of therapy •The beta-elimination half-life of MDX-H210 ranged from 4 to 8 hours at doses up to 20 mg/m2 •Release of cytokines IL-6 G-CSF and TNF-α  •Increasing human anti-BsAb after the third infusion •No objective clinical responses                     | (128)                |
| KN026                                                                                           | HER2 (domain II and IV) From heavy chains of pertuzumab and trastuzumab27 with a common light chain | KN026-CHN-001<br>Phase I first-in-human<br>multicenter open-label single<br>agent dose-escalation and<br>dose-expansion study | •Increased ORR and median PFS in patients with co-<br>amplification of HER2/CDK12                                                                                                                                                                                                                                                                                                                                       | (129)<br>NCT03619681 |
| HER2 BATs                                                                                       | HER2 and CD3<br>Two cross-linked mAbs                                                               | Phase II clinical trial                                                                                                       | •Increased Th1 cytokines Th2 cytokines and chemokines were observed after HER2 BATs infusions •Enhanced adaptive and innate antitumor responses Immune consolidation with HER2 BATs after chemotherapy increased the proportion of patients who remain stable at four months and improves the median OS for both HER2-HR* and TNBC patient groups                                                                       | (130)<br>NCT01022138 |
| HER2Bi armed anti-CD3-<br>activated T cells in<br>combination with low-<br>dose IL-2 and GM-CSF | HER2 and CD3<br>BsAb sources:<br>Trastuzumab<br>heteroconjugated<br>to OKT3                         | Phase I clinical trial                                                                                                        | •Increasing OS •Increasing IFN-γ and Th1 cytokines in the patient's blood indicating enhanced immune responses. These infusions induced •Inducing antigen-specific T cell and antibody responses against HER2 CEA and EGFR                                                                                                                                                                                              | (131)<br>NCT00027807 |





#### Safety

- □ The most common Grade ≥3 treatment-related adverse events (TRAEs) were anemia (41.4%), leukopenia (42.6%), neutropenia (52.5%), thrombocytopenia (26.5%).
- One drug-related death (febrile neutropenia) was
- No interstitial lung disease (ILD) was observed.

#### Table 2, TRAE Summary (Freg ≥ 20%)

|                                       | Total (N = 162) |           |  |
|---------------------------------------|-----------------|-----------|--|
| Preferred Term (PT), n(%)             | All Grade       | Grade ≥G3 |  |
| Anemia                                | 149 (92.0)      | 67 (41.4) |  |
| Leukopenia                            | 145 (89.5)      | 69 (42.6) |  |
| Neutropenia                           | 141 (87.0)      | 85 (52.5) |  |
| Thrombocytopenia                      | 111 (68.5)      | 43 (26.5) |  |
| Nausea                                | 96 (59.3)       | 6 (3.7)   |  |
| Stomatitis                            | 79 (48.8)       | 9 (5.6)   |  |
| Aspartate aminotransferase increased  | 78 (48.1)       | 0         |  |
| Asthenia                              | 75 (46.3)       | 17 (10.5) |  |
| Nanine aminotransferase increased     | 73 (45.1)       | 0         |  |
| Vomiting                              | 69 (42.6)       | 1 (0.6)   |  |
| Hypertriglyceridaemia                 | 62 (38.3)       | 2 (1.2)   |  |
| Alopecia                              | 55 (34.0)       | 0         |  |
| Hypokalaemia                          | 55 (34.0)       | 6 (3.7)   |  |
| Decreased appetite                    | 54 (33.3)       | 1 (0.6)   |  |
| Hyperglycaemia                        | 50 (30.9)       | 0         |  |
| Constipation                          | 44 (27.2)       | 1 (0.6)   |  |
| Hyponatraemia                         | 43 (26.5)       | 2 (1.2)   |  |
| Hypoalbuminemia                       | 42 (25.9)       | 0         |  |
| Hypercholesterolemia                  | 41 (25.3)       | 0         |  |
| Urinary tract infection               | 38 (23.5)       | 1 (0.6)   |  |
| Weight decreased                      | 38 (23.5)       | 0         |  |
| Blood alkaline phosphatase increased  | 36 (22.2)       | 0         |  |
| Diarrhea                              | 35 (21.6)       | 3 (1.9)   |  |
| Blood lactate dehydrogenase increased | 33 (20.4)       | 0         |  |

Neutroperia combined meutophi count decreased, neutoperia, and lebele neutropenia;
 Anemia combined anemia and hemoglobin count decreased;

#### BL-B01D1, a first-in-class EGFRxHER3 bispecific antibody-drug conjugate, in patients with Locally Advanced or Metastatic Breast Cancer and other Solid Tumor: Updated results from a Phase I study

Jiong Wu<sup>1</sup>, Jian Zhang<sup>1</sup>, Yiqun Du<sup>1</sup>, Yanchun Meng<sup>1</sup>, Sa Xiao<sup>2</sup>, Hai Zhu<sup>2</sup>, Yi Zhu<sup>2</sup> 'Fudan University Shanghai Cancer Center, 'Baili-Bio (Chengdu) Pharmaceutical Co., Ltd., 'Sichuan Biokin Pharmaceutical Co., Ltd., 'Contributed equally

#### Table 3. Efficacy by Tumor subtype

|                                      | TN                 | IBC                        | HR+HE              | HR+HER2- BC                |                    |  |
|--------------------------------------|--------------------|----------------------------|--------------------|----------------------------|--------------------|--|
|                                      | Total              | Prior 1-2L<br>chemotherapy | Total              | Prior 1-2L<br>chemotherapy | Total              |  |
|                                      | (N = 44)           | (N = 26)                   | (N = 77)           | (N = 46)                   | (N = 40)           |  |
| Median prior line of therapy (Range) | 2 (1-10)           | 2 (1-3)                    | 3 (0-13)           | 3 (1-7)                    | 4 (0-8)            |  |
| Best Overall Response (BOR), n       |                    |                            |                    |                            |                    |  |
| CR                                   | 1*                 | 1"                         | 1"                 | 1"                         | 0                  |  |
| PR                                   | 14                 | 12                         | 35                 | 24                         | 19                 |  |
| cPR                                  | 15                 | 13                         | 28                 | 20                         | 19                 |  |
| SD                                   | 21                 | 7                          | 25                 | 13                         | 13                 |  |
| PD                                   | 4                  | 2                          | 9                  | 6                          | 7                  |  |
| NE                                   | 4                  | 4                          | 7                  | 2                          | 1                  |  |
| ORR, % (95%CI)                       | 34.1% (20.5, 49.9) | 50.0% (29.9, 70.1)         | 46.8% (35.3, 58.5) | 54.3% (39.0, 69.1)         | 47.5% (31.5, 63.9) |  |
| ORR confirmed, % (95%CI)             | 34.1% (20.5, 49.9) | 50.0% (29.9, 70.1)         | 37.7% (26.9, 49.4) | 45.7% (30.9, 61.0)         | 47.5% (31.5, 63.9) |  |
| DCR, % (95%CI)                       | 81.8% (67.3, 91.8) | 76.9% (56.4, 91.0)         | 79.2% (68.5, 87.6) | 82.6% (68.6, 92.2)         | 80.0% (64.4, 91.0) |  |
| Median DOR (months) (95% CI)         | 11.5 (4.6, NR.)    | 11.5 (4.6, NR)             | 7.4 (5.6, NR)      | 7.1 (5.4, 9.8)             | 7.4 (4.6, 9.8)     |  |
| Median PFS (months) (95% CI)         | 5.8 (4.3, 12.7)    | 6.9 (4.0, 13.7)            | 7.0 (5.5, 8.5)     | 8.3 (5.7, 11.1)            | 7.0 (3.2, 9.0)     |  |
| 6-month PFS rate (%) (95% CI)        | 48.4 (31.5, 63.4)  | 58.2 (34.8, 75.8)          | 58.1 (45.2, 69.0)  | 66.8 (49.6, 79.4)          | 55.2 (37.5, 69.8)  |  |
| Median OS (months) (95% CI)          | NR (13.2, NR)      | NR (13.2, NR)              | NR (NR, NR)        | NR (NR, NR)                | NR (15.1, NR)      |  |
| 12-month OS rate (%) (95% CI)        | 68.9 (51.4, 81.2)  | 74.0 (50.6, 87.5)          | 67.7 (54.4, 77.9)  | 74.0 (56.2, 85.4)          | 78.9 (54.6, 91.1)  |  |
|                                      |                    |                            |                    |                            |                    |  |

CR was not confirmed as of cutoff date but was confirmed as of October 10th, 2024. # CR was confirmed as of cutoff date. NE: assigned to patients enrolled without post baseline scan, except for one patient's post baseline evaluation was not evaluable.

Anemia 41.4% Neutropenia 42.6% Trombopenia 26.5% No ILD

<sup>&</sup>lt;sup>4</sup>Thrombocytopenia combined platelet court decreased and thrombocytopenia:
<sup>5</sup>Stonasis combined stonalis, aphthous stemplite, mouth ulceration, oral mucose erosion and oral mucosal blistering

## Zanidatamab in Combination With Evorpacept in HER2-Positive and HER2-Low Metastatic Breast Cancer: Results From a Phase 1b/2 Study

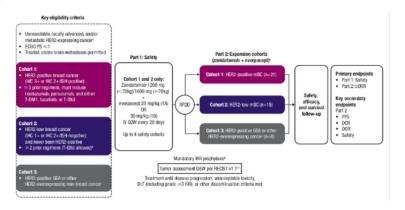
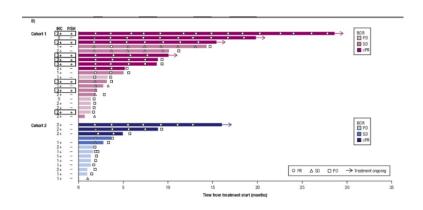




Table 3. Disease Response Endpoints

|                                         | Cohort 1                                        |                                                      |                           |                          |                                |
|-----------------------------------------|-------------------------------------------------|------------------------------------------------------|---------------------------|--------------------------|--------------------------------|
|                                         | HER2-Positive by<br>Central Assessment<br>(n=9) | Not HER2-Positive by<br>Central Assessment<br>(n=12) | All<br>(n=21)             | Cohort 2<br>(n=15)       | Cohort 3<br>(n=8) <sup>a</sup> |
| cORR, n (%) [95% CI]                    | 5 (55.6)<br>[21.2, 86.3]                        | 2 (16.7)<br>[2.1, 48.4]                              | 7 (33.3)<br>[14.6, 57.0]  | 3 (20.0)<br>[4.3, 48.1]  | 1 (14.3)<br>[0.4, 57.9]        |
| CR, n (%) <sup>b</sup>                  | 0 (0)                                           | 0 (0)                                                | 0 (0)                     | 0 (0)                    | 0 (0)                          |
| PR, n (%)                               | 5 (55.6)                                        | 2 (16.7)                                             | 7 (33.3)                  | 3 (20.0)                 | 1 (14.3)°                      |
| SD, n (%)                               | 2 (22.2)                                        | 6 (50.0)                                             | 8 (38.1)                  | 3 (20.0)                 | 2 (28.6)                       |
| PD, n (%)                               | 1 (11.1)                                        | 4 (33.3)                                             | 5 (23.8)                  | 7 (46.7)                 | 4 (57.1)                       |
| NE, n (%)                               | 1 (11.1)                                        | 0 (0)                                                | 1 (4.8)                   | 2 (13.3)                 | 0 (0)                          |
| DCR, n (%) [95% CI]                     | 7 (77.8)<br>[40.0, 97.2]                        | 8 (66.7)<br>[34.9, 90.1]                             | 15 (71.4)<br>[47.8, 88.7] | 6 (40.0)<br>[16.3, 67.7] | 3 (42.9)<br>[9.9, 81.6]        |
| Median DOR, months (range) <sup>d</sup> | NE<br>(5.6-25.9)                                | NE<br>(3.6-15.0)                                     | NE<br>(3.6-25.9)          | 5.5<br>(3.6-11.0)        | NE<br>(14.8-14.8               |
| Median PFS, months (95% CI)             | 7.4<br>(0.6, NE)                                | 3.5<br>(1.6, 14.6)                                   | 3.6<br>(1.8, 11.0)        | 1.9<br>(1.6, 3.9)        | 1.9<br>(1.1, 3.8)              |

<sup>17</sup> patients were response evaluable. There was 1 HBH2-positive mBC patient treated at the lower dose of evarpacept in Part 1 that achieved a CR (rection DGR 20.2 months). "Suivary gland cancer." DGR was assessed in patients with a confirmed complete or partial response.

| able 2. Summary of Safety Outcomes (All Patier    | its)      |                     |         |
|---------------------------------------------------|-----------|---------------------|---------|
|                                                   |           | All Patients (N=52) |         |
| Any TRAE,* n (%)                                  |           | 45 (86.5)           |         |
| Grade 1-2                                         |           | 38 (73.1)           |         |
| Grade 3                                           |           | 7 (13.5)            |         |
| Grade 4-5                                         |           | 0 (0)               |         |
| Serious TRAEs, n (%)                              |           | 3 (5.8)9            |         |
| TRAEs leading to treatment discontinuation, n (%) |           | 2 (3.8)°            |         |
| TRAEs leading to dose reductions, n (%)           |           | 0 (0)               |         |
| Treatment-related AESI, n (%)                     |           |                     |         |
| Left ventricular dysfunction <sup>d</sup>         |           | 1 (1.9)             |         |
| IRR                                               |           | 12 (23.1)           |         |
| Non-infectious pulmonary toxicities               |           | 0 (0)               |         |
| Most common TRAEs,* n (%)                         | Grade 1   | Grade 2             | Grade 3 |
| Diarrhea                                          | 20 (38.5) | 9 (17.3)            | 3 (5.8) |
| Fatigue                                           | 9 (17.3)  | 7 (13.5)            | 1 (1.9) |
| Nausea                                            | 11 (21.2) | 3 (5.8)             | 0 (0)   |
| IRR                                               | 3 (5.8)   | 7 (13.5)            | 2 (3.8) |



cORR, confirmed objective response rate; Q, confidence intensit; GR, compiler response; DCR, disease control rate; DCR, disease c

NCT06435429 Recruiting

A Study Comparing the Efficacy and Safety of **Zanidatamab** to Trastuzumab, Each in Combination With Physician's Choice Chemotherapy, for the Treatment of Participants With Metastatic HER2-positive Breast Cancer

Conditions

Metastatic HER2-positive Breast Cancer



## Anticuerpos biespecíficos

## Papel en cáncer de mama

- Estudios iniciales prometedores
- Múltiples opciones futuras
- ¿Podremos vencer la heterogeneidad ?
- Múltiples combinaciones/sinergias en investigación
  - Inmunoterapia
  - Quimioterapia
  - Otros agentes: hormona, inhibidores vías de activación celular
  - ADC bi-triespecíficos
- Vencer resistencias y nuevas opciones terapéuticas
- Seguridad del tratamiento
- ¿Papel en cáncer de mama precoz?

