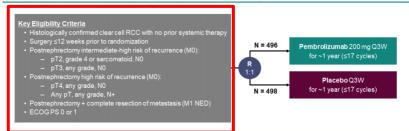
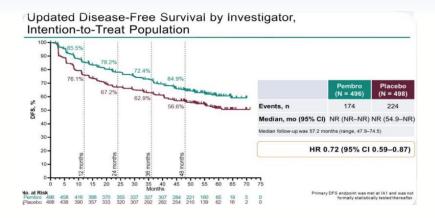
VII SIMPOSIO NACIONAL de ONCOLOGÍA de PRECISIÓN

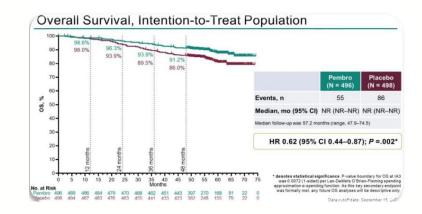
Vigo, 20 y 21 de febrero de 2025

Dr. Ovidio Fernández Calvo Servicio Oncología Médica Complexo Hospitalario Universitario de Ourense Vigo 21 Febrero 2025

Disclosures

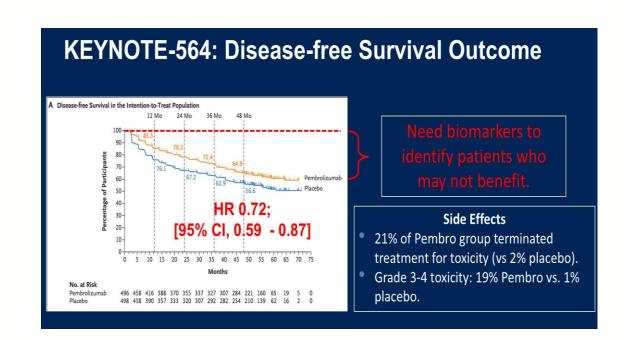

• Consultant or Advisory Role: Astellas Pharma, Pfizer, Bristol-Myers-Squibb, Ipsen, Merck, Eisai


• Speaking honoraria: Novartis, Bristol-Myers-Squibb, Ipsen, Roche, Astellas Pharma, Bayer


• Travel/Accommodations: Bristol-Myers-Squibb, Ipsen, Astellas

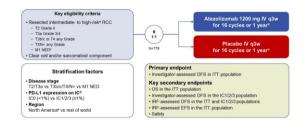
Keynote 564

KEYNOTE-564 Study (NCT03142334)

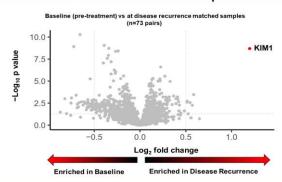


Keynote 564

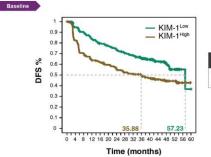
Improvement in both **DFS** and **OS** but......


- Overtreatment
- Toxicity
- We need to select patients based on biomarkers

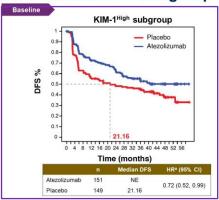
IMMotion010: Kim-1

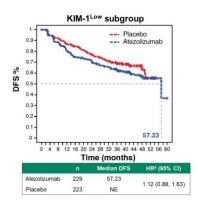

Circulating kidney injury molecule-1 (KIM-1) biomarker analysis in IMmotion010, a randomized Phase 3 study of adjuvant atezolizumab vs placebo in patients with renal cell carcinoma at increased risk of recurrence after resection

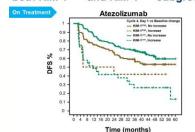
IMmotion010 Study design (NCT03024996)


Circulating biomarker analysis scheme Biomarker identification Association of circulating KIM-1 with DFS outcomes A high-sensitivity, quantitative, electrochemiluminescence A high throughput proteomics analysis was assay was used to evaluate circulating KIM-1 in all performed using an affinity-based proximity extension available baseline, on-treatment, treatment assay panel of approximately 3000 proteins discontinuation and disease recurrence serum samples Circulating proteins with differential abundance A serum KIM-1 cutoff was selected based on optimal and patterns in matched baseline vs disease recurrence stable differentiation of clinical benefit between treatment samples (n=73 pairs) were identified arms Study Treatment: Atezolizumab or Placebo At Disease Recurrence(n=103) Baseline (Pre-treatment) On treatment Or At Discontinuation without (n=752) Disease Recurrence (n=371)

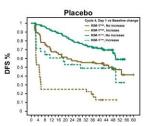
KIM-1 was identified as the most significantly enriched circulating protein in recurrence vs baseline serum samples in IMmotion010


IMMotion010: Kim-1

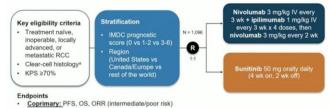

KIM-1 High status at baseline was associated with worse DFS in IMmotion 010 $\,$


		Median DFS (months)	HR* (95% CI)
KIM-1 ^{High}	300	35.88	4.75 (4.40.0.47)
KIM-1Low	452	57.23	1.75 (1.40, 2.17)

Atezolizumab improved DFS vs Placebo in the baseline KIM-1^{High} subgroup



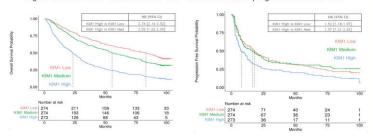
On-treatment increase in KIM-1 was associated with worse DFS in both KIM-1 $^{\rm High}$ and KIM-1 $^{\rm Low}$ subgroups



Baseline	On-treatment		Median DFS	HR (95% CI)
KIM-1 ^{High} Incr	Increase ^a	12	14.8	
KIM-1	No increase	126	NE	1.68 (0.77, 3.69)
KIM-1Low	Increase ^a	34	11.5	
	No increase	179	NE	3.56 (2.21, 5.75)

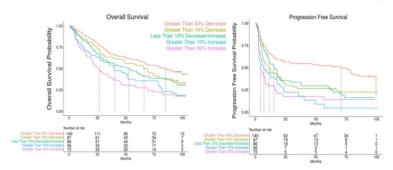
Time (months)					
Baseline	On-treatment	n	Median DFS	HR (95% CI)	
KIM-1 ^{Hgh} Increase [®] No increase	Increase*	36	4.8		
	No increase	105	45.4	3.53 (2.24, 5.58)	
KIM-1Low	Increase ^a	28	29.0		
	No increase	179	NE	2.51 (1.42, 4.44)	

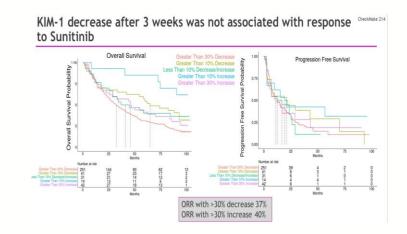
Checkmate-214: Kim-1

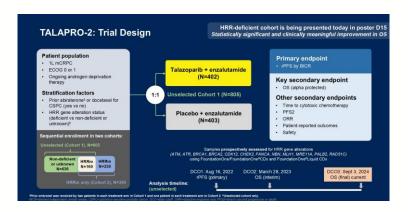


- · Secondary: PFS, OS, ORR (ITT)
- · Exploratory: PFS, OS, ORR (favorable risk)

CheckMate 214

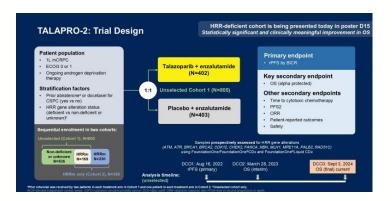

Baseline KIM-1 levels and clinical outcomes


· Higher baseline KIM-1 was associated with worse overall and progression free survival



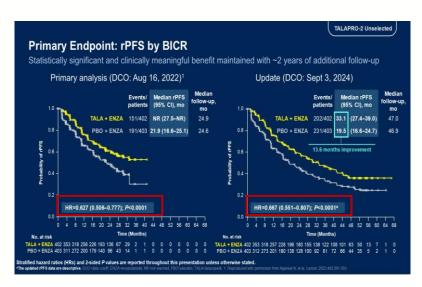
KIM-1 association with outcomes remains significant after adjustment for

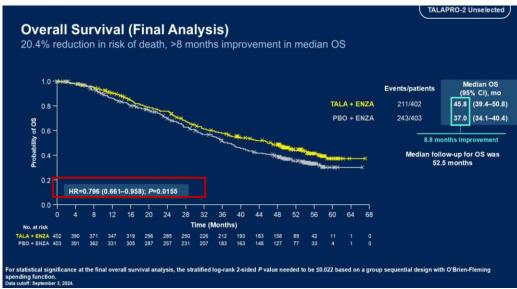
Early KIM-1 decrease associated with PFS & OS in Nivo+lpi arm



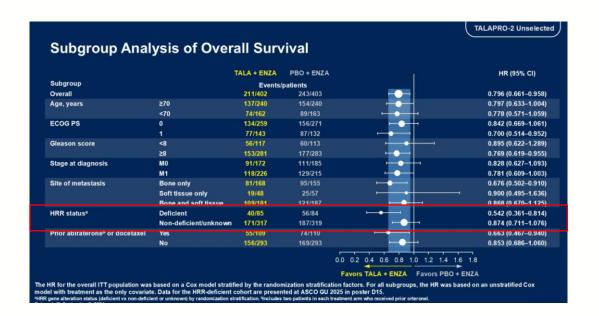
Prior abiraterone ^a or docetaxel, n (%)		109 (27.1)	110 (27.3)
	Abiraterone	21 (5.2)	25 (6.2)
	Docetaxel	86 (21.4)	93 (23.1)
HRR gene alteration status ^b , n (%)	Deficient	85 (21.1)	84 (20.8)
	Non-deficient or unknown	317 (78.9)	319 (79.2)

Tissue source for <u>prospective</u> HRR gene alteration testing, n (%)	Talazoparib + Enzalutamide (N=402)	Placebo + Enzalutamide (N=403)
Tumor tissue	402 (100.0)	403 (100.0)
Tumor tissue and blood (circulating tumor DNA)	57 (14.2)	58 (14.4)

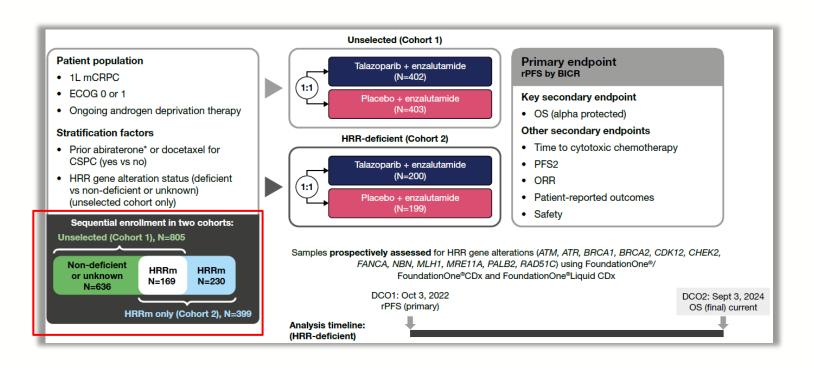

HRR gene alterations by prospective tumor tissue testing, n (%)	Talazoparib + Enzalutamide (N=402)	Placebo + Enzalutamide (N=403)
1 or more alterations in the corresponding gene	85 (21.1)	82 (20.3)
CDK12	23 (5.7)	29 (7.2)
BRCA2	23 (5.7)	28 (6.9)
ATM	23 (5.7)	14 (3.5)
CHEK2	6 (1.5)	5 (1.2)
BRCA1	5 (1.2)	4 (1.0)
Other (ATR, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C)	14 (3.5)	13 (3.2)



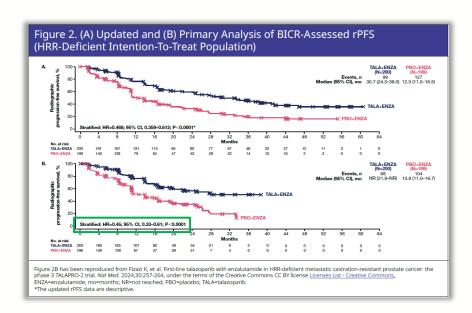
Prior abiraterone ^a or docetaxel, n (%)		109 (27.1)	110 (27.3)
	Abiraterone	21 (5.2)	25 (6.2)
	Docetaxel	86 (21.4)	93 (23.1)
HRR gene alteration status ^b , n (%)	Deficient	85 (21.1)	84 (20.8)
	Non-deficient or unknown	317 (78.9)	319 (79.2)


Tissue source for <u>prospective</u> HRR gene alteration testing, n (%)	Talazoparib + Enzalutamide (N=402)	Placebo + Enzalutamide (N=403)
Tumor tissue	402 (100.0)	403 (100.0)
Tumor tissue and blood (circulating tumor DNA)	57 (14.2)	58 (14.4)

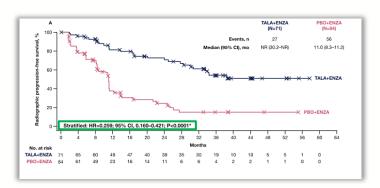
HRR gene alterations by prospective tumor tissue testing, n (%)¹	Talazoparib + Enzalutamide (N=402)	Placebo + Enzalutamide (N=403)
1 or more alterations in the corresponding gene	85 (21.1)	82 (20.3)
CDK12	23 (5.7)	29 (7.2)
BRCA2	23 (5.7)	28 (6.9)
ATM	23 (5.7)	14 (3.5)
CHEK2	6 (1.5)	5 (1.2)
BRCA1	5 (1.2)	4 (1.0)
Other (ATR, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C)	14 (3.5)	13 (3.2)



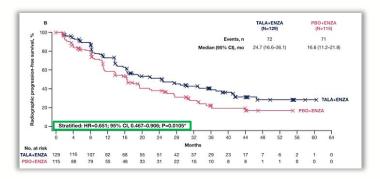
VII SIMPOSIO NACIONAL de ONCOLOGÍA de PRECISIÓN



TEAEs, n (%)	TALA + ENZA (N=398)	PBO + ENZA (N=401)	No new safety findings were
Any TEAE	394 (99.0)	384 (95.8)	identified after an additional 2 years of follow-up
Treatment-related	360 (90.5)	286 (71.3)	No additional cases of MDS or
SAEs	182 (45.7)	126 (31.4)	AML in the talazoparib group;
Treatment-related	85 (21.4)	13 (3.2)	n=1 of each previously reported
Grade 3–4 TEAEs	302 (75.9)	179 (44.6)	Rate of discontinuation of
Grade 5 TEAEs	14 (3.5)	20 (5.0)	talazoparib due to AEs was
Treatment-related	1 (0.3)	2 (0.5)	similar to that in the primary
Dose interruption of talazoparib or placebo due to AE	260 (65.3)	99 (24.7)	 analysis In exposure-adjusted analyses,
Dose reduction of talazoparib or placebo due to AE ^a	217 (54.5)	29 (7.2)	rate of venous embolic and thrombotic events was
Discontinuation of talazoparib or placebo due to AE	86 (21.6)	52 (13.0)	(2.4 per 100 participant-years)



rPFS HRR population



rPFS favored TALA plus ENZA in patients with and without BRCA1/2 alterations

rPFS BRCA1/2

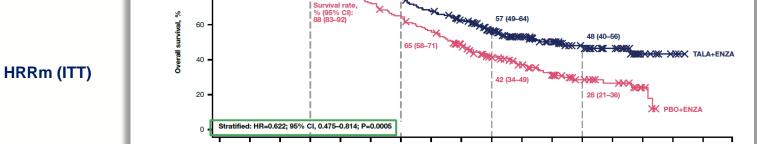
rPFS Non-BRCA1/2 HRRm

Overall Survival HRR (Final Analysis)¹

TALAPRO-2 HRRm

PBO+ENZA

(N=199)


31.1 (27.3-35.4)

TALA+ENZA

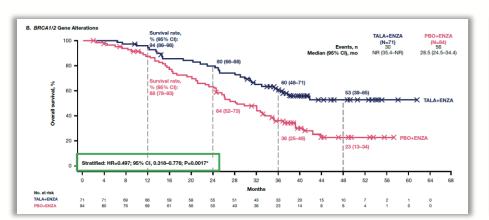
(N=200)

45.1 (35.4-NR)

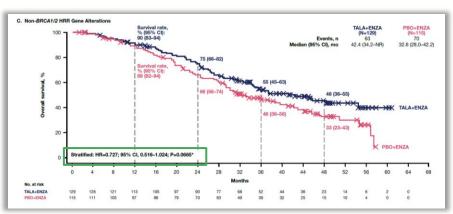
Events, n Median (95% CI), mo

A. Any HRR Gene Alterations (HRR-Deficient Intention-To-Treat Population)

80


Survival rate,

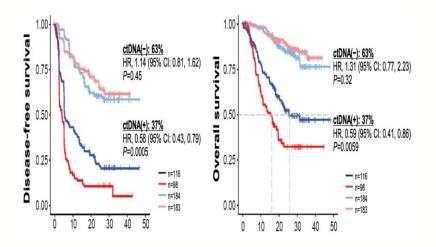
% (95% CI):


At a median follow-up of 44.2 months, treatment with TALA plus ENZA resulted in a 38% reduced risk of death vs ENZA plus PBO for patients with HRR-deficient mCRPC

Overall Survival BRCA1/2 (Final Analysis)¹

BRCA1/2

Non-BRCA1/2 HRRm


 Patients with BRCA1/2 gene alterations had a 50% reduction in risk of death and those with non-BRCA1/2 HRR gene alterations had a 27% lower risk of death with TALA plus ENZA vs ENZA plus PBO

^{*}The P values are nominal and descriptive for the subgroup analyses.

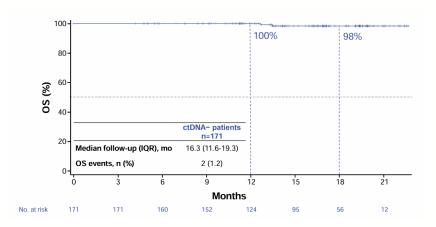
Tissue sample for PD-L1 testing

Imvigor 010: ctDNA exploratory analysis

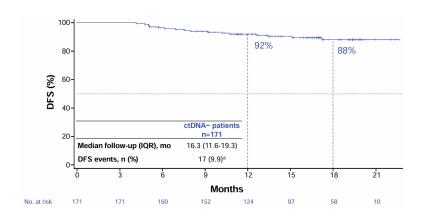
Key eligibility^a High-risk MIUC (bladder, renal pelvis, ureter) Radical cystectomy/nephroureterectomy with LN dissection within ≤ 14 weeks - ypT2-T4a or ypN+ for patients treated with NACb - pT3-T4a or pN+ for patients not treated with NACb No postsurgical radiation or AC If no prior NAC given, patient had to be ineligible for, or declined, cisplatin-based AC ECOG PS 0-2 Observation^c q3w

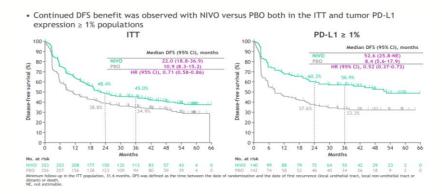
Study desing

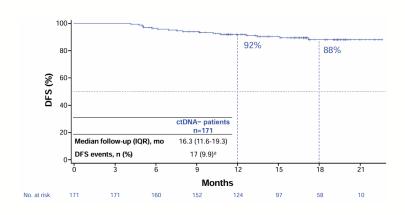
Screening Surveillance Treatment Follow-Up · High-risk MIBC Atezolizumab Primary ctDNA+ - (y)pT2-T4a N0 M0 or (y)pT0-T4a N+ × 1 y analysis Treatment M0 at cystectomy population: Serial plasma collection Follow-Up Received or did not receive prior NAC Placebo g6w for 6 mo Not included Eligible or not eligible for AC post-cystectomy; $\times 1 y$ in analysis g12w for months 6-12 Cystectomy within past 6-24 weeks with no evidence of residual disease Radiographic imaging No known PD-L1 status for adjuvant q12w for up to 12 mo Surveillance Radiographic Survival follow-up post-cystectomy aroup: Included imaging q6m for 2 y q6m for 2 y Available tumour sample for PD-L1 status^a in analysis and WES and matched blood sample ctDNA- definition: Primary endpoint: · Disease-free status at baseline Investigator-assessed DFS ≥1 ctDNA- result and no ctDNA+ result Key secondary endpoint: ≥1 post-baseline diseases assessment OS . Completed ≥12 mo of surveillance post-cystectomy or discontinued surveillance <12 mo with no ctDNA+ result

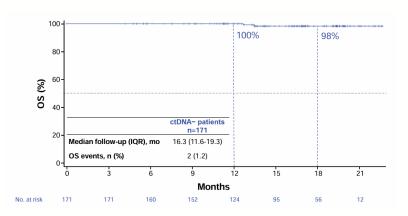

ctDNA- population

Characteristic		All ctDNA- patients n=171
Median age (range), y		69 (40-90)
Race, n (%)	White	96 (56.1)
	Asian	63 (36.8)
	Othera	12 (7.0)
Male, n (%)		135 (78.9)
ECOG PS at	0	115 (67.3)
screening, n (%)	1	49 (28.7)
o	2	7 (4.1)
Histology at radical	UC	142 (83.0)
resection, n (%)	UC with mixed histology	29 (17.0)
Tumour stage, n (%)b	<t2< td=""><td>18 (10.7)</td></t2<>	18 (10.7)
	T2	59 (34.9)
	T3	74 (43.8)
	T4	18 (10.7)
Nodal stage, n (%)	N0	135 (78.9)
_	N+	36 (21.1)
PD-L1 status, n (%)c	IC0/1	98 (57.6)
	IC2/3	72 (42.4)
Lymph nodes	<10	37 (22.2)
removed, n (%)d	≥10	130 (77.8)
Lymph node density,	<20	162 (97.0)
n (%)d	≥20	5 (3.0)
Prior neoadjuvant	Yes	83 (48.5)
chemotherapy, n (%)	No	88 (51.5)

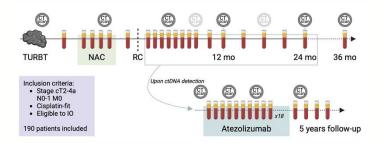

DFS in the ctDNA-population


OS in the ctDNA-population


DFS in the ctDNA-population


DFS in Checkmate274

DFS in the ctDNA-population

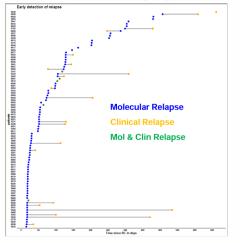


OS in the ctDNA-population

- We need longer follow-up in both arms
- Has ctDNA negative a negative predictive value?
- Serial ctDNA testing may have greater clinical hability than landmark ctDNA as a risk stratification tool using Natera Signature

Tombola Trial

Primary objective:

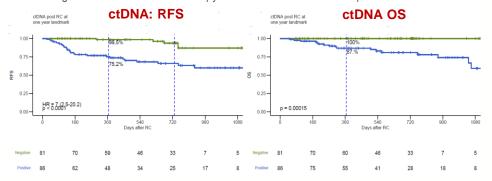

 Complete response (CR) after treatment with investigational agent initiated by ctDNA positive status after radical cystectomy.

CR defined as NED = negative ctDNA and no visible metastasis on CT

Secondary objectives:

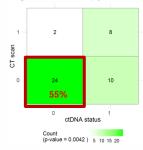
- Duration of freedom from clinical relapse
- Overall survival
- Cancer specific survival

Relapse following cystectomy

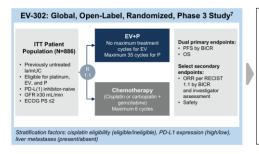

56% were ctDNA+ post-RC

75% were detected < 4 months post RC

Of the ctDNA- patients, only 2 (3%) developed metastases on CT-scan during follow-up


Tombola Trial

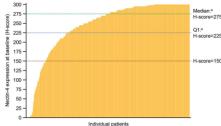
Oncological outcome – immunotherapy at the time of molecular relapse


Primary endpoint

NED (No evidense of disease) (CT and ctDNA-) following immunotherapy

EV-302: Exploratory Analysis Nectin-4 Expression

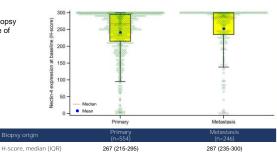
Study Design and Methods



Exploratory Nectin-4 Biomarker Analysis

- Retrospective assessment of Nectin-4 expression^a by a CAP/CLIA validated Nectin-4 IHC assay in primary or metastatic tumor tissue^b
- Nectin-4 expression and Nectin-4/PD-L1 expression were available for 800 of 886 randomized patients (EV+P: n=394; chemotherapy; n=406)
- PD-L1 expression status was determined as high (CPS ≥10) or low (CPS <10) using a validated PD-L1 IHC assay^o
- Clinical efficacy (PFS, OS, and ORR) was assessed in Nectin-4 expression subgroups

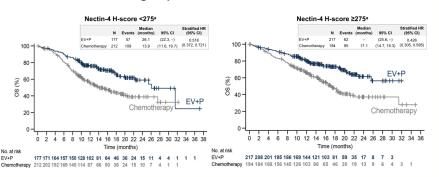
Distribution of Nectin-4 H-Scores Was Skewed Toward High Expression



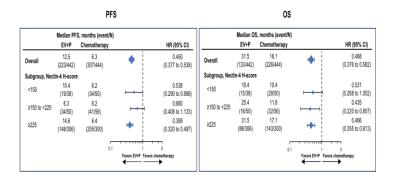
Variable	EV+P (n=394)	Chemotherapy (n=406)
H-score, median (IQR)	280 (230-298)	270 (215-297)
Subgroup, H-score, n (%)		
<150	38 (9.6)	50 (12.3)
≥150 to <225	50 (12.7)	56 (13.8)
≥225	306 (77.7)	300 (73.9)
Patients with H-score 0, n (%)	3 (0.8)	6 (1.5)

High Nectin-4 H-Scores Were Observed Regardless of the Biopsy Origin

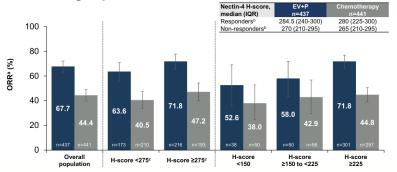
 The majority (69%) of biopsy samples submitted were of primary origin^a


Data cutoff: 8 August 2023.

EV, enfortumab vedion; IOR, interquartile range; la/mUC, locally advanced or metastatic urothelial cancer; P, pembrolizumab.


"These are not matched biopsies; one tumor tissue sample was submitted for each patient.

EV-302: Exploratory Analysis Nectin-4 Expression


Consistent OS Benefit with EV+P in Both <275 and ≥275 Nectin-4 H-Score Subgroups

Consistent PFS and OS Benefit with EV+P Across Nectin-4 H-Score Subgroups

Consistent ORR Benefit with EV+P Across All Nectin-4 Subgroups

Conclusions

Adjuvant Pembrolizumab treatment improves OS in High-Risk RCC patients

Kim-1 could be a biomarker to select which patients could benefit from adjuvant immmunotherapy

KIM- 1: Preliminary data in patients with advanced disease treated with IO show positivy results

Talapro2 (Talazoparib + Enzalutamide) demonstrate an improvement in OS in mCRP patients

The question is: what patients? All corners? HRR +? BRCA1/2? And others....

ctDNA is the most promising biomarker in UC (Adjuvant setting) but

We can not actually select treatment based on this results

EV +P improve OS independent on Nectin-4 expression

VII SIMPOSIO NACIONAL de ONCOLOGÍA de PRECISIÓN

Vigo, 20 y 21 de febrero de 2025

Dr. Ovidio Fernández Calvo Servicio Oncología Médica Complexo Hospitalario Universitario de Ourense Vigo 21 Febrero 2025