

MÁS DE 20 AÑOS A LA VANGUARDIA DE LA FORMACIÓN EN LA BIOLOGÍA Y TRATAMIENTO DEL CÁNCER

17, 18 Y 19 DE MAYO DE 2023

Optimizando el tratamiento del cáncer de mama Her2 positivo en estadios tempranos. ¿A quiénes más y a quiénes menos?

Fernando Moreno Antón Servicio de Oncología Médica Hospital Clínico San Carlos

"La más larga caminata comienza con un paso." Proverbio Hindú

Unmet Medical Need Remains in HER2+ EBC

De-escalation of treatment (reducing toxicity)

- Shortening adjuvant trastuzumab
- Less toxic chemotherapy
- Avoiding treatment of "low risk" patients
- Optimizing trastuzumab administration
- Economic toxicity (biosimilars)

Escalation (increasing efficacy)

- Increasing duration of trastuzumab
- Addition of lapatinib
- Addition of neratinib
- Addition pertuzumab
- Addition of T-DM1

De-escalation of treatment (reducing toxicity)

- Shortening adjuvant trastuzumab
- Less toxic chemotherapy
- Avoiding treatment of "low risk" patients
- Optimizing trastuzumab administration
- Economic toxicity (biosimilars)

Escalation (increasing efficacy)

- Increasing duration of trastuzumab
- Addition of lapatinib
- Addition of neratinib
- Addition pertuzumab
- Addition of T-DM1

 Definition of risk is critical in clinical decission & in the success of escalation and de-escalation clinical trials

 Definition of risk is critical in clinical decission & in the success of escalation and de-escalation clinical trials

Aphinity Trial: Design

Anti-HER2 therapy for a total of 1 year (18 cycles)

- **Primary endpoint:** IDFS
- **Secondary endpoints:** IDFS including second non-breast cancer, DFS, OS, recurrence-free interval, distant recurrence-free interval, cardiac and overall safety, HRQoL

Aphinity Trial: Results

iDFS after 45.2 months of FU (2017)

Updated descriptive iDFS analysis after 74.1 months of FU (2019)

Aphinity Trial: Results

IDFS in the node-positive cohort

IDFS in the node-negative cohort

ExteNET phase III trial: Study design

- Primary endpoint: invasive disease-free survival (iDFS)
- Secondary endpoints: DFS-DCIS, time to distant recurrence, distant DFS, CNS metastases, OS, safety
- Other analyses: biomarkers, health outcome assessment (FACT-B, EQ-5D)
- Stratified by: nodes 0, 1–3 vs. 4+, ER/PR status, concurrent vs. sequential trastuzumab
- Study blinded: Until primary analysis; OS remains blinded

- 2. Martin et al. Lancet Oncology 2017.
- 3. Chan et al. Clinical Breast Cancer 2020.
 - 4. Holmes et al. SABCS 2020 PD3-03

ExteNET Primary Endpoint:

iDFS Intention-to-treat Population 2-Year Analysis and 5-Year Analysis

CI, confidence interval; HR, hazard ratio; iDFS, invasive disease-free survival; ITT, intention to treat.

ExteNET 2-year Analysis: the absolute iDFS advantage with neratinib in the HR+ subgroup is up to 4.1%

CI, confidence interval; HR, hazard ratio; HR+, hormone receptor positive; HR-, hormone receptor negative; iDFS, invasive disease-free survival.

Nerlynx EPAR Public Assessment Report. European Medicines Agency. 13 July 2018. EMA/CHMP/525204/2018. Available at: https://www.ema.europa.eu/en/documents/assessment-report/nerlynx-epar-public-assessment-report en.pdf;

Definition of risk is critical in clinical decission & in the success of escalation and de-escalation clinical trials

Association between pCR and EFS (patient level)

HR negative: HR 0.29 (0.24-0.36) HR positive: HR 0.52 (0.40-0.66)

NeoSphere: Design

Neoadjuvant treatment Adjuvant treatment q3w x 4 Arm A Trastuzumab + docetaxel (n = Trastuzumab + FEC S Arm B Pertuzumab + trastuzumab Trastuzumab + FEC + docetaxel (n = 107) G R Arm C Ε Pertuzumab + trastuzumab (n = Trastuzumab + [docetaxel → 107) FEC1 R Arm D Pertuzumab + docetaxel (n = Trastuzumab + FEC 96)

Neosphere: pCR rate (breast)

Gianni L, et al. Lancet Oncol 2012; 13:25-32

TRYPHAENA trial

BERENICE trial

Figure 3. pCR (ypT0/is ypN0, intent-to-treat population)

HER2+ EBC: Which factors predict relapse after pCR?

NeoSphere: DFS according pCR (No adjuvant pertuzumab)

A Subgroup	Tumor and Nodal Stage	No.	5-Year Rate, %	HR	95% CI	HR (95% CI)
Hormone receptor+ pCR+	T1-2/N- (reference)	212	91.4			
	T3-4/N-	65	87.0	0.84	0.53-1.35	
	T1-2/N+	200	83.6	0.55	0.33-0.90	
	T3-4/N+	160	80.4	0.46	0.25-0.85	
Hormone receptor- pCR+	T1-2/N- (reference)	196	90.3			
	T3-4/N-	90	79.3	0,58	0.40-0.84	
	T1-2/N+	280	87.5	0.87	0.58-1.29	
	T3-4/N+	294	82.4	0.50	0.30-0.83	
					0.70	030 030 040 030 080 10 12

In pCR+ patients, cT and cN were significant independent prognostic factors for EFS

NeoSphere: DFS according pCR

- cT1-4/N0-3/M0 at presentation (cT1a-b/N0 excluded)
- Centrally confirmed HER2-positive breast cancer
- Neoadjuvant therapy must have consisted of
 - Minimum of 6 cycles of chemotherapy
 - · Minimum of 9 weeks of taxane
 - Anthracyclines and alkylating agents allowed
 - · All chemotherapy prior to surgery
 - Minimum of 9 weeks of trastuzumab
 - · Second HER2-targeted agent allowed
- Residual invasive tumor in breast or axillary nodes
- Randomization within 12 weeks of surgery

Stratification factors:

- Clinical presentation: Inoperable (stage cT4 or cN2-3) vs operable (stages cT1-3N0-1)
- Hormone receptor: ER or PR positive vs ER negative and PR negative/unknown
- Preoperative therapy: Trastuzumab vs trastuzumab plus other HER2-targeted therapy
- Pathological nodal status after neoadjuvant therapy: Positive vs negative/not done

KATHERINE Invasive Disease-Free Survival

Definition of risk is critical in clinical decission & in the success of escalation and de-escalation clinical trials

ER/PR expression

Gene expression PAM 50

Immune signatures & TILs

Predicting pCR vs prognosis in CALGB40601 trial

Among 688 RNA biomakers:

215 (31%) were associated with pCR 45 (7%) were associated with RFS* 22 (3%) were associated with both

Easier to predict pCR than RFS

Predictors of pCR do not have to predict RFS and vice-versa

HER2DX genomic test for early-stage HER2+ disease

- o T size
- Nodal status
- o 27 genes
- 4 gene signatures
 - IGG/B-cell/plasma (14 genes)
 - Proliferation
 - luminal differentiation
 - HER2 amplicon expression
- HER2DX risk-score
- HER2DX pCR-score
- HER2DX ERBB2-score

HER2DX clinical validation

HER2DX risk score	HER2DX pCR likelihood score				
 7 Studies → 1,812 patients Clinic-Padova-PAMELA phase II APT phase II trial ATEMPT phase II trial CALGB40601 phase III SCAN-B TCGA METABRIC 	7 Studies → 872 patients • Clinic-Padova • PAMELA phase II • CALGB40601 phase III • ISPY-2 phase II • PER-ELISA phase II • DAPHNe phase II trial • MADRID/GOM observational trial • BiOnHER phase II trial				
1 Gene list association studyN9831 phase III: 849 patients					

Prat et al. EBioMedicine 2022
Fara Brasó-Maristany ESMO Breast 2022
PER-ELISA presented at ESMO Paris 2022 and published in EBioMedicine 2022
DAPHNe and GOM studies: JAMA Oncol 2023 In Press
APT and ATEMPT: SABCS 2022 and ESMO Breast 2023
BiOnHER phase II trial: To be presented at ESMO Breast 2023

Should we change this algorithm depending on HER2DX test results?

Tolaney NEJM 2015; Tolaney JCO 2019; Tolaney Lancet Oncol 2023; Tolaney JCO 2021

Tolaney NEJM 2015; Tolaney JCO 2019; Tolaney Lancet Oncol 2023; Tolaney JCO 2021

- Combined analysis of 4 neoadjuvant cohorts (CALGB 40601, ISPY-2, DAPHNe, GOM-HGUGM-2018-05)
- n=568 patients
- pCR rates +/- dual blockade (44.8% vs 58.3%)
- HER2DX-pCR-high benefits from dual HER2 blockade (OR 4,10 p< 0.001)

Who needs neoadjuvant pertuzumab?

- Combined analysis of 4 neoadjuvant cohorts (CALGB 40601, ISPY-2, DAPHNe, GOM-HGUGM-2018-05)
- n=568 patients
- Poly-CT (n=282; 49.6%) Single taxane (n=286; 50.4%
- pCR rates poly-CT single taxane (59.8% vs 56.6%)
- HER2DX-pCR-medium benefits from multi-agent CT

Who needs neoadjuvant poly-CT?

- Validation cohort with more median follow-up (73.2 months)
- N=148 pts did not achieve a pCR
- The HER2DX low-risk group had longer DFS than high-risk (7-year 94.6%vs. 77.5%; HR=0.40, p=0.002).

- Validation cohort with more median follow-up (73.2 months)
- N=148 pts did not achieve a pCR
- The HER2DX low-risk group had longer DFS than high-risk (7-year 94.6%vs. 77.5%; HR=0.40, p=0.002).

Definition of risk is critical in clinical decission & in the success of escalation and de-escalation clinical trials

ctDNA in risk stratification

- Prospective, multicenter, sample collection, validation study conducted at 5 UK medical centers (2011-2016)
- N=170 eBC with NACT→surgery OR surgery→adjuvant CT
- Personalized digital (dPCR) assays designed to track individual somatic muts in plasma samples
- 165 muts identified: 78 pts (77.2%) with 1 mut and 23 pts (22.8%) with multiple muts (median allele frequency of 26%)
- Validated personalized dPCR assays developed for 150 muts (90.9%) from 101 pts

Mutation tracking in HER2 + BC

Conclusions

- Clinicopathologic features & pathologic response are the main factors to stratify patients on the basis of their risk of recurrence and guide us in making treatment recommendations
- Biologic heterogeneity within HER2-positive disease modulates treatment response and prognosis
- Strategies to escalate or de-escalate treatment in HER2-positive early-stage BC should consider other biomarkers, beyond HER2 and HR-status, including molecular intrinsic subtype, immune infiltration, levels of HER2
- HER2DX integrates this information and could be useful to select (neo)adjuvant treatment. However, clinical utility should be confirmed in randomized clinical trials.