

6-7 JULIO 2023

GU-Alliance for Research and Development

Management of metastatic CSPC

David Lorente Estellés

Medical Oncology

Instituto Valenciano de Oncología. Valencia (Spain)

Disclosures

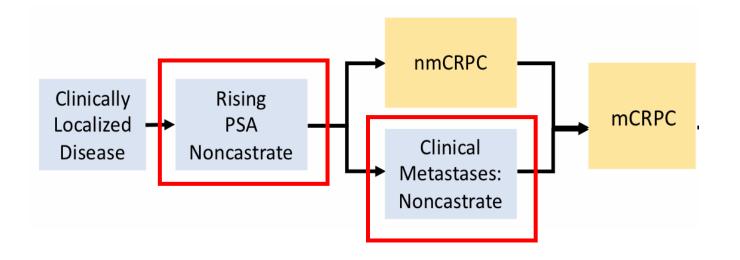
- Employment: None
- Consultant or Advisory Role: Janssen, Astellas, MSD, Bayer
- Stock Ownership: None
- Research Funding: None
- Grant support: None
- Other (Speaking and travel grants): Janssen, Astellas, Pfizer, Ipsen, Bristol, Astra-Zeneca, Roche, MSD

6-7 JULIO 2023

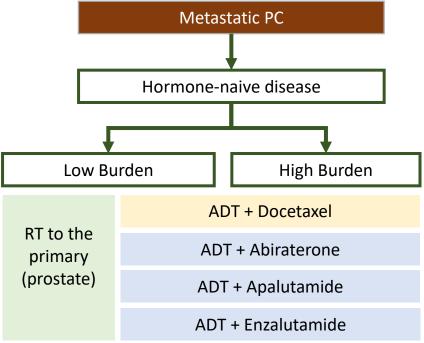
GU-Alliance for Research and Development

Management of metastatic CSPC

- Systemic therapy options
- Risk stratification based on clinical biomarkers
- Radiotherapy to the primary tumor
- What is the right treatment strategy?
- Therapy intensification / deintensification
- Molecular biomarkers


6-7 JULIO 2023

GU-Alliance for Research and Development


What is mCSPC?

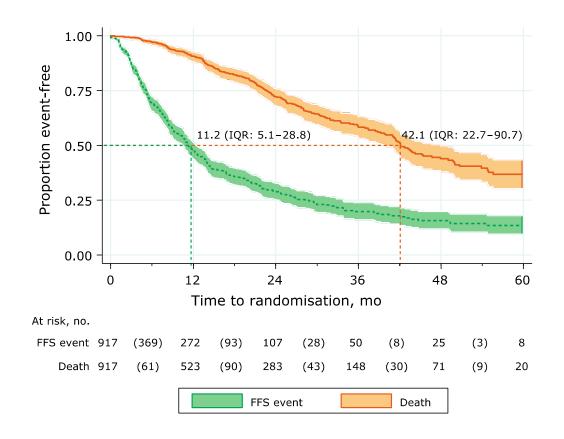
- Detection of distant metastases
 Traditionally by CT scan/bone scan
 Novel imaging techniques (PSMA-PET CT)
- Testosterone in the non-castrate range (> 50 ng/dL)

What treatment options are available?

2020 ESMO guidelines

But now, also...

ADT + Docetaxel + Abiraterone


ADT + Docetaxel + Darolutamide

GU-Alliance for Research and Development

Androgen deprivation therapy (ADT) is the main therapeutic approach in metastatic prostate cancer and **must be** continued throughout the disease

guardsymposium2023

@GuardConsortium

STAMPEDE trial: control group

917 mHSPC patients treated in the contrl group of the STAMPEDE trial GnRH analogues +/- bicalutamide with/without prior radiotherapy

FFS (median)	11.2 m
OS (median)	42.1 m
2-yr OS	72%

7-month PSA response with ADT + bicalutamide

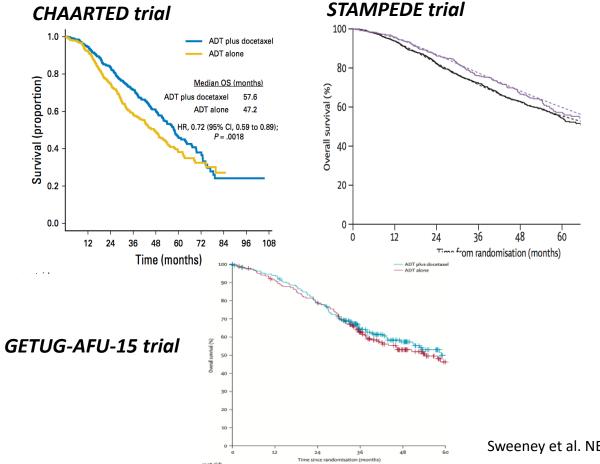
(control group SWOG 1216 trial)

PSA < 0,2 ng/mL: 44%

PSA < 4 ng/mL: 75%

6-7 JULIO 2023

GU-Alliance for Research and Development



ADT alone is inferior to ADT + Docetaxel

Phase III trials: ADT + Docetaxel vs ADT alone

guardsymposium2023

@GuardConsortium

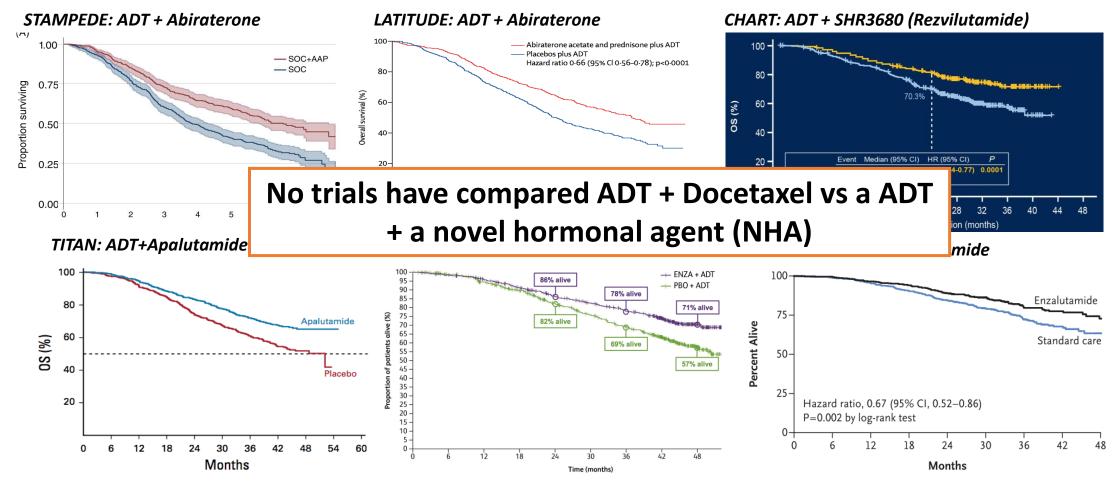
Metastatic disease

STOPCAP Metaanalysis

	Control	Treatment		Hazard ratio (95% CI)
CHAARTED ⁷	136/393	101/397 🜓		0.61 (0.47-0.80)
GETUG-15 ^{9,10}	NA/193	NA/192 -		0.90 (0.69–1.81)
STAMPEDE ⁸ (SOC+/-Doc)	350/724	144/362		0.76 (0.62-0.93)
STAMPEDE ⁸ (SOC+ZA+/–Doc)	170/366	158/365	_	0.85 (0.65-1.10)
Overal		*).77 (0.68-0.87
Heterogeneity: χ²=4·80; dt=3; p=	=0.18/;1=3/.	5%	1	7
		←		2
		Favours SOC + docetaxel	Favours SOC	

Non-metastatic disease

	Control	Treatment		Hazard ratio (95% CI)
GETUG-12 ²⁵	49/206	42/207 —	-	0.94 (0.60–1.48)
RTOG 0521 ²⁸	59/281	43/282 ———		0.70 (0.47-1.04)
STAMPEDE ⁸ (SOC+/-Doc)	65/460	31/230 —	-	0.95 (0.62–1.46)
STAMPEDE ⁸ (SOC+ZA+/–Doc)	31/227	20/228 ——		1.05 (0.57–1.95)
Overall			-	0.87 (0.69–1.09)
Heterogeneity: χ²=1·80; dt=3; p=	=0·614; I²=0%	0·5	1	1 2
		Favours SOC + d	— — → ocetaxel Favours S0	. OC


Sweeney et al. NEJM 2015. James et al. Lancet 2015. Gravis et al. Lancet Oncol 2013. Vale et al. Lancet Oncol 2016.

guardsymposium2023

GU-Alliance for Research and Development

ADT (+/- bicalutamide) is inferior to ADT + novel hormonal agents

GU-Alliance for Research and Development

What is the best option? ADT + ARSIs or ADT + Docetaxel?

No direct comparison between treatment strategies to date

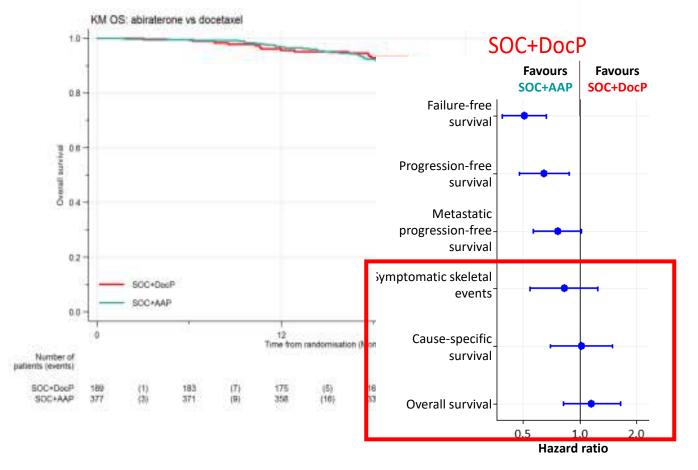
	FUD	OS	tto	OS co	ontrol	LID (0E%/CI)	A 21 OS	n valva
	FUP	Median	3-yr	Median	3-yr	HR (95%CI)	Δ 3yr OS	p-value
CHAARTED	53.7 m	57.6 m	~71%*	47.2 m	~58%*	0.72 (0.59-0.89)	~13%	p=0.0018
STAMPEDE (Docetaxel)	78.2 m	59.1 m	~66%*	43.1 m	~59%*	0.81 (0.69-0.95)	~7%	p=0.003
LATITUDE	51.8 m	53.3 m	~65%*	36.5 m	~51%**	0.66 (0.56-0.78)	~14%	p<0.001
STAMPEDE (Abiraterone)	73 m	79.2 m	~73%*	45.6	~60%*	0.60 (0.50-0.71)	~13%	p<0.001
ENZAMET	68 m	NR	80%	73.2 m	72%	0.67 (0.52-0.86)	8%	p=0.002
ARCHES	44.6 m	NR	78%	NR	69%	0.66 (0.53-0.81)	9%	p<0.001
TITAN	44 m	NR	-	52.2 m	-	0.67 (0.51-0.89)	-	p=0.005
CHART	30.5 m	NR	~71%*	NR	~58%*	0.58 (0.44-0.77)	~13%	p<0.001

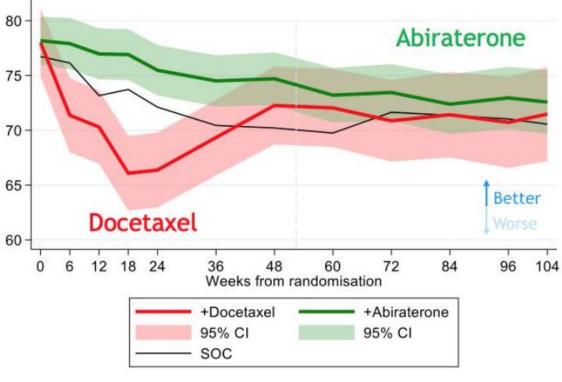
6-7 JULIO 2023

GU-Alliance for Research and Development

Beware of indirect comparisons and network meta-analyses!!

	CHAARTED	STAM	1PEDE	LATITUDE	ENZAMET	ARCHES	TITAN	CHART
	CHAARIED	Docetaxel	Abiraterone	LAITIODE	EINZAIVIET	ARCHES	IIIAN	CHART
Patients	mHSPC	mHSPC & hig	h risk nmHSPC	High risk mHSPC	mHSPC	mHSPC	mHSPC	mHSPC
Primary endpoint	OS	C)S	OS & rPFS	OS	rPFS	OS	OS & rPFS
Comparator arm	ADT	SOC	SOC	ADT	ADT +/- Doce	ADT + AA +/- Doce	ADT +/- Doce	ADT + AA
Follow-up	53.7 m	78.2 m	73 m	51.8 m	68 m	44.6 m	44 m	30.4 m
High volume	64.9%	56%	52%	-	52.3%	63.2%	62.8%	100%
Prior local therapy	27.2%	5%	7%	4%	-	12-26%	16.4%	~10%
Docetaxel for mHSPC	0	0	0	0	45%	15.5%	10.7%	0
ECOG PS 2	1.5%	NR	NR	?	0	0	0	0
Age	64 a	66 a	66 a	67 a	69 a	70 a	69 a	69 a
Gleason ≥ 8	60.7%	67.5%	77.3%	97.6%	58.3%	66%	67.4%	81.5%
Visceral metastases	15%	5%	6%	12-17%	11.5%	?	12.1%	20%


GU-Alliance for Research and Development


No difference in OS between ADT + Abi & ADT + Docetaxel in a post-hoc, indirect, non-randomised comparison of contemporaneous patients of the STAMPEDE trial

guardsymposium2023

@GuardConsortium

Better quality of life for patients treated with ADT + Abiraterone than those treated with ADT + Docetaxel in the STAMPEDE trial

GU-Alliance for Research and Development

ADT + novel hormonal agents have a better toxicity profile

guardsymposium2023

@GuardConsortium

Docetaxel (CHAARTED)

NHAs are easy to use, with manageable toxicity profiles

	Grade ≥ 3
Fatigue	0.3%
Allergic reaction	3.3%
Neuropathy	0.7%
Fatigue	1.7%
Anemia	0.3%
Thrombopenia	0.3%
Neutropenia	12.1%
Febrile neutropenia	6.1%

CHAARTED: 86% of the patients in the combination group completed six cycles of docetaxel therapy

ADT + NHA doublets have been the prefered treatment option based on oral administration & a more favorable toxicity profile

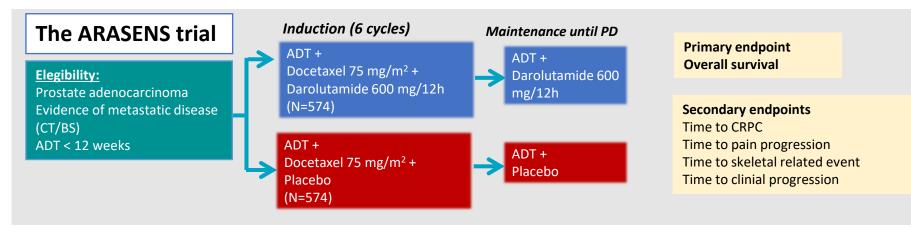
Abiraterone (LATITUDE)

	All Grades	G ≥ 3
Hypertension	37%	20%
Hypokalemia	20%	11%
AST/ALT increase	16%	6%
Hyperglycemia	13%	4%
Cardiac disorder	12%	4%
Fatigue	13%	2%

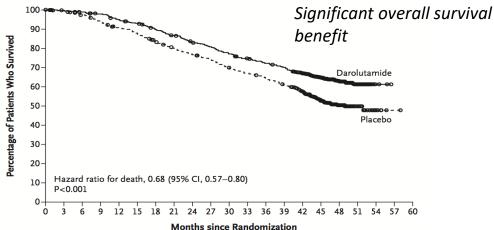
Apalutamide (TITAN)

	All Grades	Grade ≥ 3
Rash	27.1%	6.3%
Fatigue	19.7%	1.5%
Fall	7.4%	0.8%
Hypothiroidism	6.5%	0
Fracture	6.3%	1.3%
Seizure	0.6%	0.2%

Enzalutamide (ARCHES)


	All Grades	Grade ≥ 3
Seizures	0.3%	0.3%
Hypertension	8.6%	3.3%
Cognitive/memory	4.5%	0.7%
Fatigue	24.1%	1.7%
Fall	3.7%	0.3%
CV events	4%	1.5%

GU-Alliance for Research and Development



Is more better? Triplet therapy

Stratification:

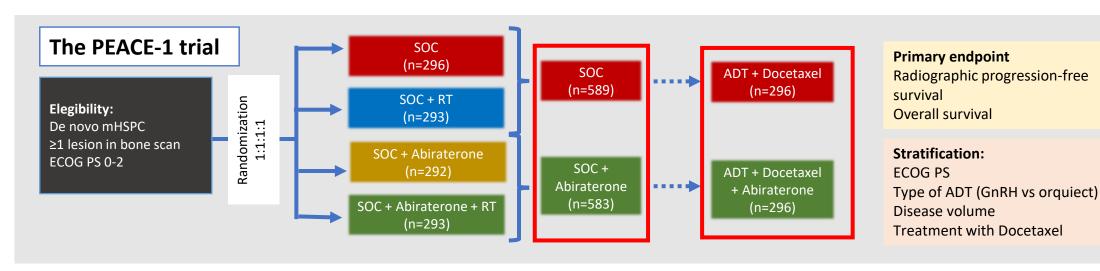
Stage IVa vs IVb vs IVc Alkaline Phosphatase > or < LSN

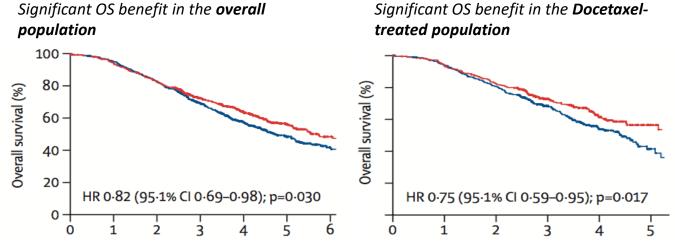
Results with a median follow-up of 43.7 months (overall survival)

	ADT+D+Daro	ADT+D	HR (IC95%);p-val
OS (median)	NA	48.9 m	0.69 (0.67 0.90), 5<0.001
4-yr OS	62.7%	50.4%	0.68 (0.57-0.80); p<0.001
TTCRPC	NA	19.1 m	0.36 (0.30-0.42); p<0.001
T to pain prog	NA	27.5 m	0.79 (0.66-0.95); p=0.01
SRE-PFS	51.2 m	39.7 m	0.61 (0.52-0.72); p <0.001

Darolutamide 651 645 637 627 608 593 570 548 525 509 486 468 452 436 402 267 139 56 9 0 0 Placebo 654 646 630 607 580 565 535 510 488 470 441 424 402 383 340 218 107 37 6 1 0 0

6-7 JULIO 2023


GU-Alliance for Research and Development



HR (IC95%);p-val

ADT+D

ADT+D+ Abi

os	NA	52.8 m	0.75 (0.59-0.95); p=0.017	Arasens: HR 0.68
PCSM	NA	56.4 m	0.50 (0.34-0.71); p=0.006	
rPFS	54 m	36 m	0.36 (0.30-0.42); p<0.001	
TT mCRPC	45.6 m	18 m	0.38 (0.66-0.95); p=0.01	Arasens: HR 0.36
	PCSM rPFS	PCSM NA rPFS 54 m	PCSM NA 56.4 m rPFS 54 m 36 m	PCSM NA 52.8 m p=0.017 PCSM NA 56.4 m 0.50 (0.34-0.71); p=0.006 rPFS 54 m 36 m 0.36 (0.30-0.42); p<0.001 TT mCRPC 45.6 m 18 m 0.38 (0.66-0.95);

GU-Alliance for Research and Development

Management of metastatic CSPC

- Systemic therapy options
- Risk stratification based on clinical biomarkers
- Radiotherapy to the primary tumor
- What is the right treatment strategy?
- Therapy intensification / deintensification
- Molecular biomarkers

GU-Alliance for Research and Development

Doublet (ADT + NHA) and triplet (ADT + Docetaxel + NHA) are the main systemic therapy options in fit patients.

Can we use <u>biomarkers</u> to decide what option to recommend? What questions can these biomarkers answer?

Do I need a more intensive treatment or can I spare toxicity?

Can an improved **prognostic** assessment guide therapy decisions?

Avoiding overtreatment (= toxicity) in patients with **indolent disease** that will be candidates for sequential treatment

Intensifying therapy in patients with **aggressive disease** that may otherwise not receive all therapeutic options (higher risk of progression & death)

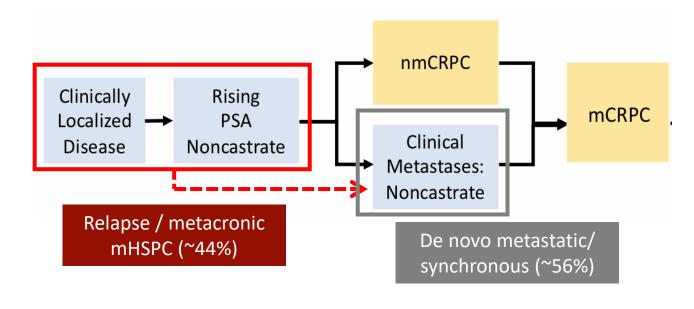
Can we develop **predictive biomarkers** to improve decision-making?

Identification of subsets based on clinical biomarkers that are **more likely to benefit** from a particular treatment option (ADT + NHAs vs ADT + Docetaxel + NHAs)

GU-Alliance for Research and Development

Advanced prostate cancer is a clinically heterogeneous disease

Burden of metastatic disease and **timing** of presentation **define clinically relevant subgroups**


Volume / risk

Defined by CT and bone scintigraphy

Low volume/risk = everything that is not high volume/risk

	High volume/risk
GLASS	Visceral metastases or in the appendicular skeleton.
CHAARTED	≥ 4 bone mets with ≥ 1 outside the spine or bone mets in pelvis or visceral mets
LATITUDE	Two or more of the following: > 3 bone mets, visceral mets, Gleason ≥ 8

Prior Therapy

GU-Alliance for Research and Development

Advanced prostate cancer is a clinically heterogeneous disease

Burden of metastatic disease and **timing** of presentation have a **clear prognostic value**

Volume / risk

Overall survival in pts treated with ADT alone (control arm)

	Med	lian	5 yr OS	
	Hi vol Low vol		Hi vol	Low vol
CHAARTED	34,4m	NR	~27%*	~54%*
STAMPEDE (Docetaxel)	35,2m	76,7m	~23%*	~56%*
STAMPEDE (Abi)**	~34m*	NR	28%	55%

Overall survival in pts treated with ADT alone (control arm)
GETUG-AFU-16, STAMPEDE, CHAARTED trials

Overall survival	5-yr OS	
High values	Synchronous (n=1044)	26%
High volume	Metachronic (n=132)	28%
Louvelume	Synchronous (n=582)	52%
Low volume	Metachronic (n=229)	72%

5-year overall survival rates on ADT alone can range from 26% (high volume, synchronous) to 72% (low volume metachronic)

Should the treatment strategy be the same for all patients?

Prior Therapy

^{*}Estimation based on the inspection of the Kaplan Meier curves

^{**}Using LATITUDE high/low risk criteria

6-7 JULIO 2023

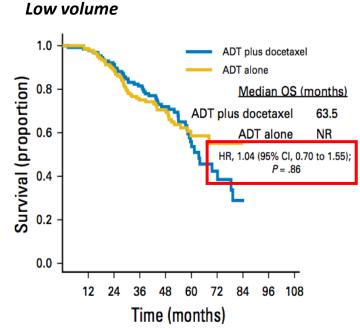
GUARD

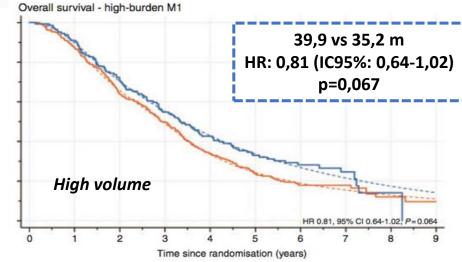
GU-Alliance for Research and Development

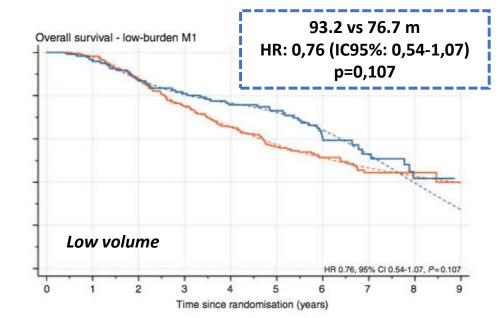
Is burden of disease a predictive factor?

CHAARTED TRIAL:

Benefit of ADT + Docetaxel restricted to high-volume patients


guardsymposium2023


@GuardConsortium

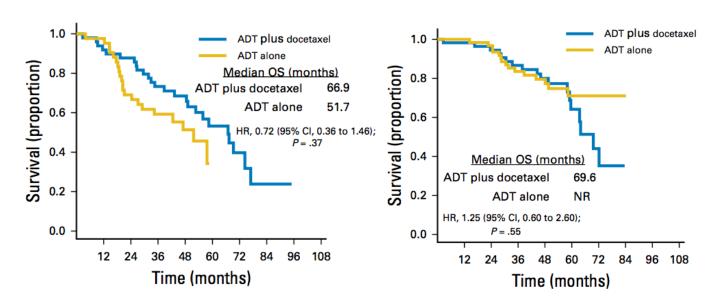

High volume 1.0 ADT plus docetaxel ADT alone Median OS (months) ADT plus docetaxel 51.2 ADT alone 34.4 HR, 0.63 (95% CI, 0.50 to 0.79); P < .001 12 24 36 48 60 72 84 96 108 Time (months)

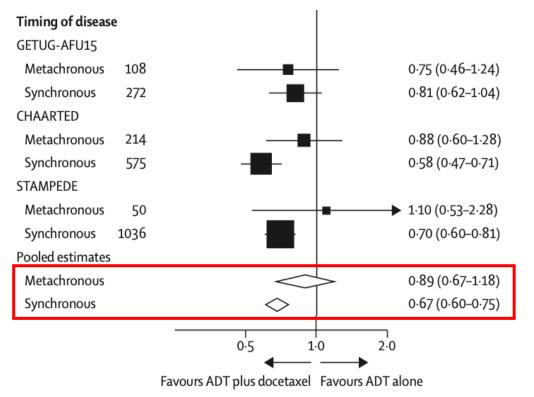
STAMPEDE trial:

Benefit from ADT +
Docetaxel is similar in high
and low-volume pts

Kyriakopoulos J Clin Oncol 2018; Hoyle et al. Eur Urol 2019;

GU-Alliance for Research and Development

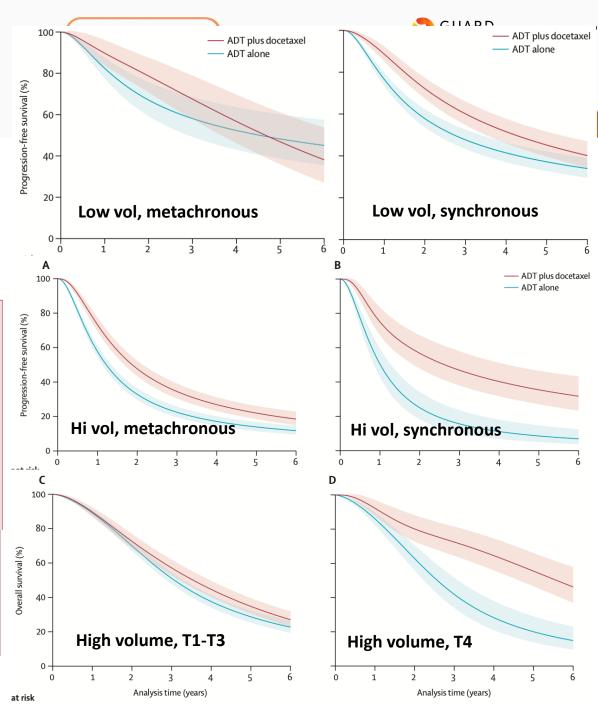



What about timing of presentation?

guardsymposium2023

@GuardConsortium

CHAARTED trial: 575 patients (72,8%) did not receive local therapy, and were considered "de novo metastatatic"


guardsymposium2023

@GuardConsortium

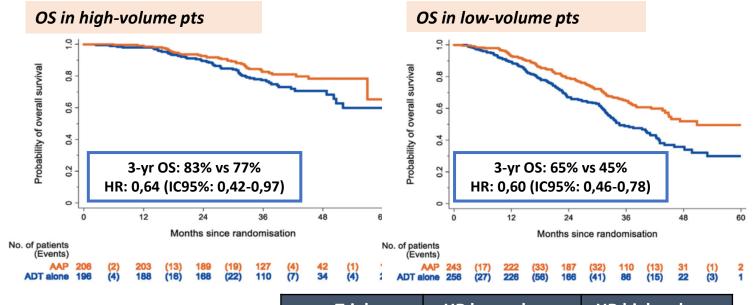
CHAARTED, STAMPEDE, GETUG trial metaanalysis

Patients with low volume metachronic mHSPC do not benefit from ADT + Docetaxel

	Overall surviv	al			
	Number of events/ patients	Absolute effect at 5 years (95% CI)	5-year survival (95% CI), ADT alone	5-year survival (95% CI), ADT plus docetaxel	
Disease volume and timing of	Disease volume and timing of diagnosis				
Low volume, metachronous†	70/229	0% (–10 to 12)	72% (63 to 82)	73% (63 to 83)	
Low volume, synchronous	267/582	8% (0 to 16)	52% (47 to 57)	60% (54 to 66)	
High volume, metachronous	78/132	10% (-6 to 26)	28% (18 to 43)	38% (25 to 57)	
High volume, synchronous	736/1044	12% (7 to 18)	26% (23 to 30)	39% (34 to 43)	
Disease volume and clinical	Γ stage				
Low volume, T stage 1–3	225/569	4% (-3 to 11)	58% (53 to 63)	62% (57 to 68)	
Low volume, T stage 4	51/85	16% (-3 to 36)	38% (26 to 54)	54% (39 to 74)	
High volume, T stage 1–3	484/709	6% (0 to 12)	29% (25 to 32)	35% (31 to 37)	
High volume, T stage 4‡	136/192	35% (24 to 47)	20% (14 to 29)	55% (47 to 66)	

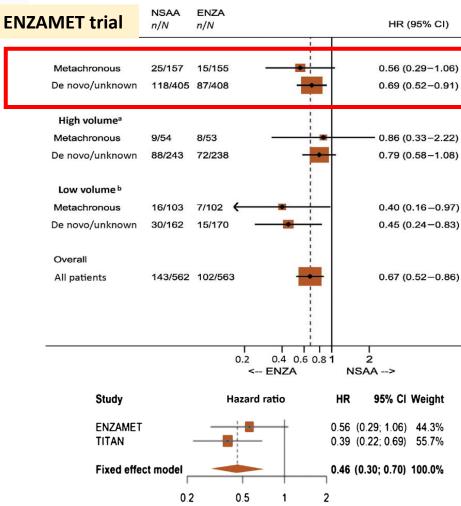
6-7 JULIO 2023

GUARD CONSORTIUM


and Development

GU-Alliance for Research

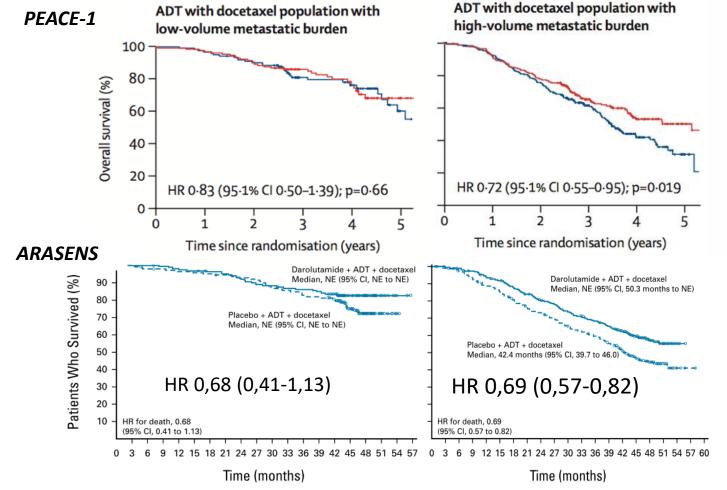
Volume & Timing in ADT + NHA-treated patients


Interaction treatment-volume (OS): p=0,77 **STAMPEDE trial (abiraterone)**

guardsymposium2023 **梦** @GuardConsortium

Disease volume and impact of treatment with enzalutamide and apalutamide

Trial	HR low volume	HR high volume
ENZAMET	0.43 (0.26-0.72)	0.80 (0.59-1.07)
ARCHES	0.66 (0.43-1.03)	0.66 (0.52-0.83)
TITAN	0.36 (0.22-0.57)	0.53 (0.41-0.67)

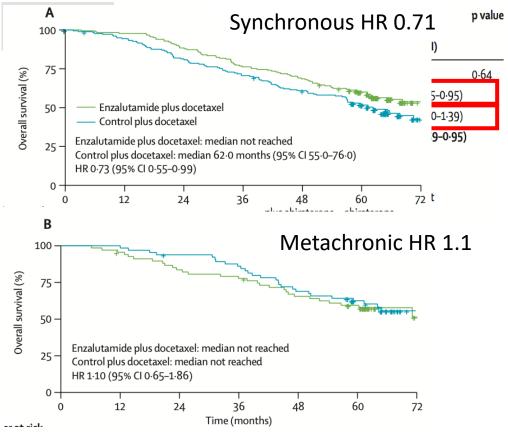


Hoyle et al. Eur Urol 2019; Sweeney et al. Eur Urol 2021

GUARD CVA 4DOCU JM

What about triplet therapy?

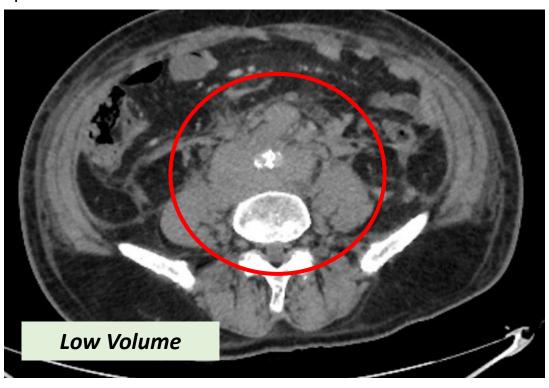
Only the impact of adding NHA to Docetaxel is assessed **Estimating the impact of Docetaxel is not possible** in ARASENS or PEACE-1



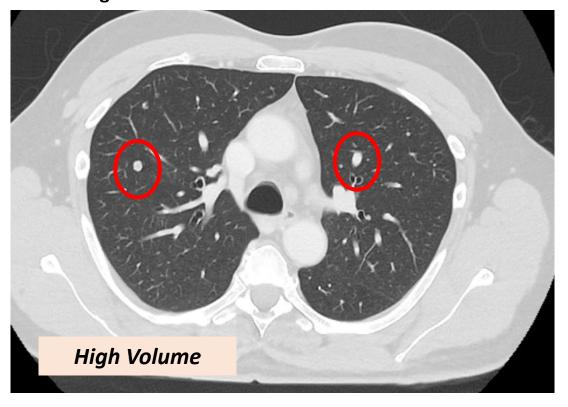
6-7 JULIO 2023

GU-Alliance for Research and Development

ENZAMET: lower benefit from the addition of enzalutamide in metachronic patients **But we know that NHAs benefit all patients!!**


Fizazi et al. Lancet 2022. Smith et al. N Eng J Med 2022. James et al N Eng J Med 2019 Hussain et al. J Clin Oncol 2023 Sweeney et al. Lancet Oncol 2023.

GU-Alliance for Research and Development

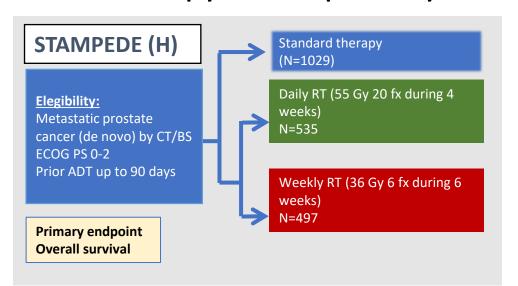


Are all high and low volume the same?

60 yrs. Prostate Adenocarcinoma Gleason 10. PSA 5 ng/mL. LDH 700 IU/L. Large **retroperitoneal lymph node mass** causing bilateral leg compressive oedema and pain. No bone disease.

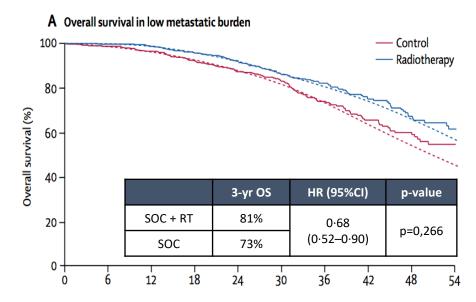
60 yrs. Prostate Adenocarcinoma Gleason 8. Asymptomatic. PSA 60 ng/mL. Small **lung metastases** with no bone disease.

GU-Alliance for Research and Development


Management of metastatic CSPC

- Systemic therapy options
- Risk stratification based on clinical biomarkers
- Radiotherapy to the primary tumor
- What is the right treatment strategy?
- Therapy intensification / deintensification
- Molecular biomarkers

GU-Alliance for Research and Development


Radiotherapy to the primary tumor

Global population: no difference in overall survival

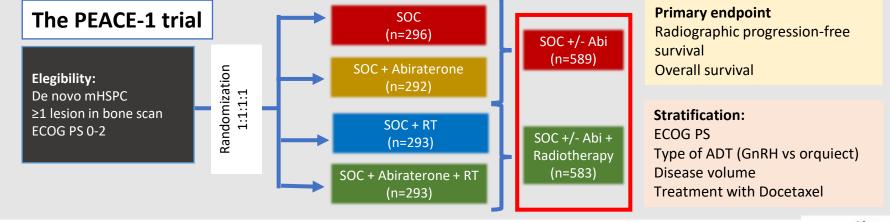
	SOC	SOC + RT
3-yr OS	62%	65%
HR	0.92 (0.8-1.06)	
p-avl	p=0.266	

Significant survival benefit in low-volume patients

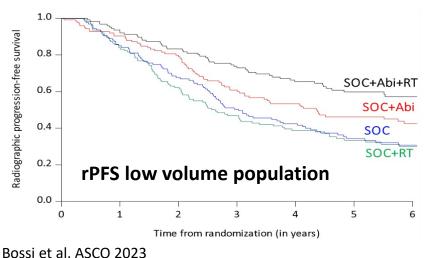
STOPCAP Metaanalysis (STAMPEDE + HORRAD): significant interaction between volume and OS

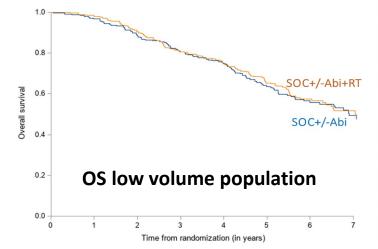
Trial name	RT + ADT events/patients	ADT s events/patients		Hazard ratio (95% CI)	% Weight
STAMPEDE [11]	342/849	357/845		0.93 (0.80, 1.08)	71.66
HORRAD [12]	131/216	139/216	-	0.89 (0.70, 1.13)	28.34
Overall	473/1065	496/1061		0.92 (0.81, 1.04)	100.00
				p = 0.195	
-		0.5	1	1 2	
		0.5	Favours RT + ADT Favours ADT		

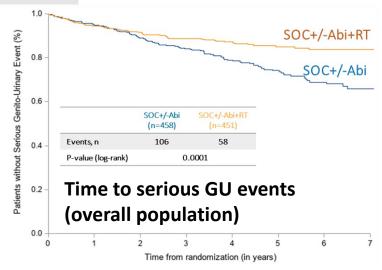
Outcome and trial name	RT + ADT events/patients	ADT events/patients			Interaction HR (95% CI)	% Weight
Overall survival STAMPEDE [11] <5	105/399	130/404		-	1.44 (1.05, 1.98	3) 75.04
≥5	218/393	207/397	-			
HORRAD [12] <5	35/89	34/71			1.55 (0.89, 2.70	0) 24.96
≥5	96/127	105/145		- 1 i		
				-	1.47 (1.11, 1.94) p = 0.007	4) 100.00


Parker et al. Lancet 2018;392:2353-2366. Boevé et al. Eur Urol 2019;75(3):410-18

GU-Alliance for Research and Development




Radiotherapy to the primary tumor


Radiotherapy: 74 Gy in 37 fractions, after docetaxel completed

	SOC +/- Abi	SOC +/- Abi + RT
Low Vol	253 (43%)	252 (43%)
High Vol	335 (57%)	332 (57%)

6-7 JULIO 2023

GU-Alliance for Research and Development

Radiotherapy to the primary tumor

guardsymposium2023

@GuardConsortium

The PEACE-1 trial

		SOC	SOC + RT	SOC + Abi	SOC + Abi + RT
-DEC ///\	Median (yr)	3	2.6	4.4	7.5
rPFS (low vol)	HR	-	1.1 (0.67-1.84)	0.76 (0.45-1.28)	0.50 (0.28-0.88)
OS (low vol)	Median (yr)	7.1	5.8	6.9	NR
OS (low vol)	HR	-	1.19 (0.82-1.72)	1.05 (0.72-1.54)	0.81 (0.55-1.22)
Time to serious	Events	32	18	20	6
GU events (low V)	p-val	0.048		0.003	
Time to serious	Events	61	34	45	24
GU events (all)	p-val	0.003		0.0	18
Time a to CDDC (all)	Median (yr)	1.3	1.6	3.1	4.3
Time to CRPC (all)	HR	-	0.79 (0.66-0.94)	0.41 (0.34-0.50)	0.33 (0.27-0.40)

GU-Alliance for Research and Development

Management of metastatic CSPC

- Systemic therapy options
- Risk stratification based on clinical biomarkers
- Radiotherapy to the primary tumor
- What is the right treatment strategy?
- Therapy intensification / deintensification
- Molecular biomarkers

GU-Alliance for Research and Development

What do we know?

mHSPC is a **highly heterogeneous disease**: great difference in survival from high volume synchronic to low volume

What are the goals of treatment?

We want to:

control the disease (symptoms - efficacy) prolong survival with the **best quality of life possible (toxicity)** for as long as possible

taxel (inferior to triplet ADT + Docetaxel + ARSI) are

Balance to find the greatest efficacy (risk of overtreatment) with the least toxicity (risk of undertreatment)

e, time to GU symptoms in all patients

- No evidence of OS benefit in the PEACE-1 trial
- In fit patients, we assume that receiving all life-prolonging therapies available (ARSIs, docetaxel, cabazitaxel, Ra-223, PARPi) at some point during the disease will result in longer overall survival

GU-Alliance for Research and Development

There is no direct comparison between ADT + ARSIs & ADT + ARSIs + Docetaxel

- Is the patient **fit for chemotherapy** (Docetaxel 75 mg/m² every 3 wks x 6 cycles)?
 - Blood counts, renal, liver function, contraindications for chemotherapy
- If elderly, what is the **risk of toxicity**? Geriatric assessment. Only **fit elderly patients** are eligible for triplet therapy.
- What about volume and timing of disease? Balance toxicity and efficacy
 - Chemotherapy not indicated in low volume, metachronous disease → ADT + hormonal agent
 - For all other patients, volume and timing are prognostic
 - Give less toxic treatment (ADT + NHA) to pts with better prognosis that will be able to receive all
 available therapies in sequence --> reduce overtreatment
 - Give more intensive (& toxic) treatment to pts with worse prognosis, that may not be able to receive all life-prolonging therapies during the course of the disease
- What does the patient want? How will therapy impact his life?
- What is the proposed therapy sequence? What are the second & further-line therapy options?

GU-Alliance for Research and Development

When should the primary be irradiated?

- A discussion on the risk/benefit of radiotherapy to the primary must be held with the patient and at the MDT
- Low volume patients: rPFS & delay/prevention of GU sypmtoms
 - STAMPEDE arm H: increased OS vs ADT alone
 - PEACE-1: no difference in OS (vs ADT +/- Docetaxel +/- Abiraterone)
- High volume patients: delay/prevention of GU symptoms
 - No survival (rPFS, OS) benefit expected

All patients except if contraindication to radiotherapy?

Large primary tumors? Urinary symptoms at diagnosis?

6-7 JULIO 2023

GU-Alliance for Research and Development

Management of metastatic CSPC

- Systemic therapy options
- Choice of systemic therapy
- Radiotherapy to the primary tumor
- Therapy Intensification / Deintensification
- Molecular biomarkers

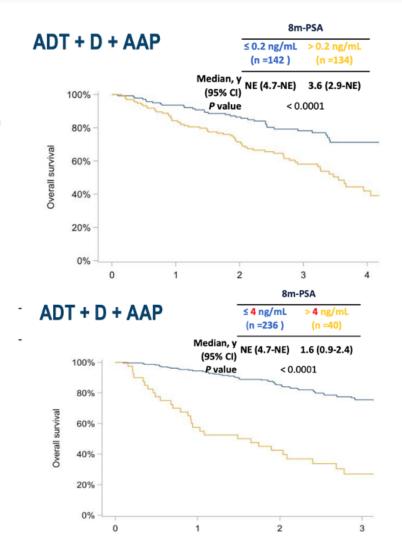
6-7 JULIO 2023

GU-Alliance for Research and Development

PSA response after 6-9 months of therapy is a strong prognostic factor

guardsymposium2023

@GuardConsortium


The prognostic value of PSA at 7-8 months has already been reported in the LATITUDE, SWOG 9346, CHAARTED trials

PSA < 0.2 ng/mL @ 9 months

	PSA 8-m	N (%)	OS	p-val	
ADT + D	≤0,2 ng/mL	74 (25%)	NR	0,0007	
ADI+D	>0,2 ng/mL	223 (75%)	3,5 yrs	0,0007	
ADT + D +	≤0,2 ng/mL	142 (51%)	NR	<0.0001	
AAP	>0,2 ng/mL	134 (49%)	3,6 yrs	<0,0001	

PSA < 4 ng/mL @ 9 months

	PSA 8-m	N (%)	OS	p-val
ADT + D	≤4 ng/mL	213 (72%)	4,5 yrs	<0.0001
	>4 ng/mL	84 (28%)	2,1 yrs	<0,0001
ADT + D +	≤4 ng/mL	236 (86%)	NR	<0.0001
AAP	>4 ng/mL	40 (14%)	1,6 yrs	<0,0001

SWOG 9346:

PSA ≥ 4 ng/mL after 6-7 months of ADT alone associated with worse OS

CHAARTED:

improved OS with PSA \leq 0.2 ng/mL at 7 months

LATITUDE:

PSA < 0.1 ng/mL associated with improved rPFS & OS

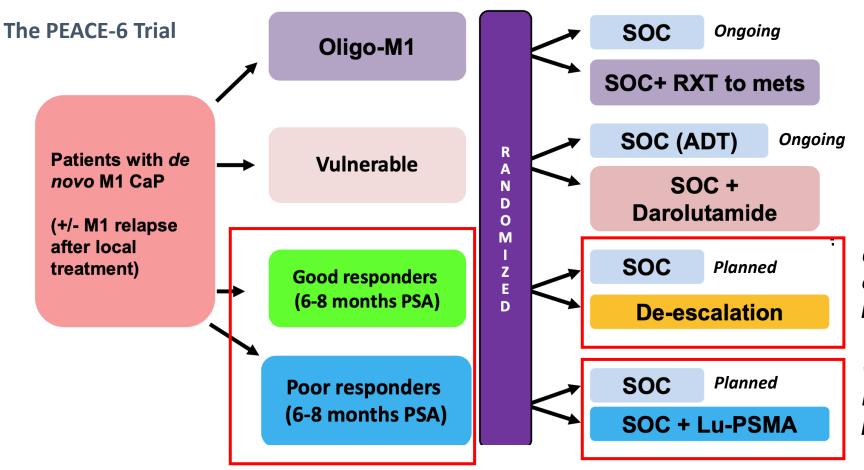
ARASENS:

undetectable PSA @ 24 & 36 wks associated with improved outcome

TITAN:

PSA ≤ 0.2 ng/mL at landmark 3 months of Apa associated with increased OS

GU-Alliance for Research and Development

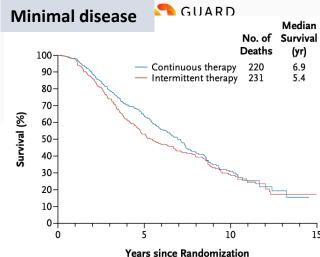


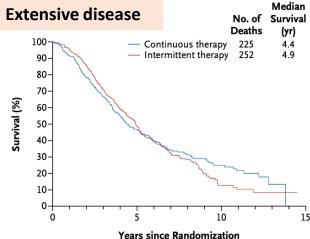
Can we use PSA response to guide therapy?

guardsymposium2023

@GuardConsortium

Can we intensify or de-escalate therapy based on 9-month PSA values?

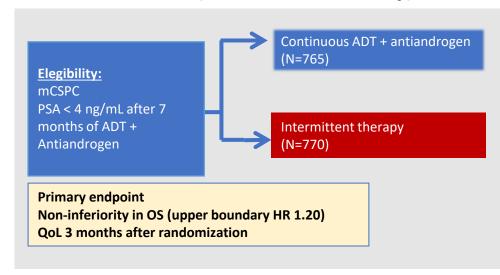

Can we avoid side effects without compromising efficacy in low-risk patients?


Will treatment intensification improve outcome in high-risk patients?

K. Fizazi. SOGUG Symposium 2022

6-7 JULIO 2023

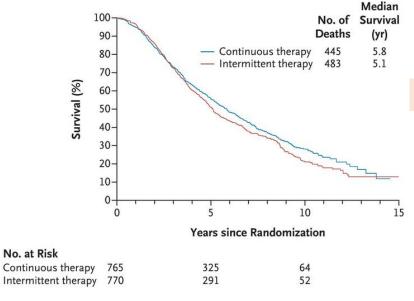
GU-Alliance for Research and Development



SWOG 9346 Trial (RPIII, non-inferiority)

guardsymposium2023

@GuardConsortium



Changes in QoL at 3 months

	Intermittent	Continuous	Difference; p-val
Erectile dysf	-7%	2%	-10%; p<0.001
High libido	16%	-2%	+18%; p=0.02
Vitality	-0.11	-1.42	+1.32; p=0.23

Grade 3-4 AEs were similar in both groups

Hazard ratio for death: 1.10 (95%CI 0.99-1.23)

CONCLUSIONS

Our findings were statistically inconclusive. In patients with metastatic hormone-sensitive prostate cancer, the confidence interval for survival exceeded the upper boundary for noninferiority, suggesting that we cannot rule out a 20% greater risk of death with intermittent therapy than with continuous therapy, but too few events occurred to rule out significant inferiority of intermittent therapy. Intermittent therapy resulted in small improvements in quality of life. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT00002651.)

GU-Alliance for Research and Development

DE-ESCALATE (PEACE-6)

Progression (defined as investigator decision to start next OS prolonging drug)

mHSPC

PSA ≤ 0.2 ng/dl after 6 to 12 months of ADT + ARSI+/-Docetaxel

Stratification

- ADT + ARSI · ADT+ ARSI+ radiotherapy
- ADT+ ARSI+ chemotherapy

Stratification

- 2:1 ratio,
- · stratified by country and
- ARPI alone, ARPI + docetaxel, ARPI + radiotherapy)
- PSA ≤0.1 vs >0.1 ≤ 0.2 ng/dl

The future of cancer therapy

MAB MAB

guardsymposium2023 **梦** @GuardConsortium

✓ Treatment reinitiate at investigator discretion

mHSPC: metastatic hormone sensitive prostate cancer: PSA90%: decrease in PSA

- ✓ Suspended at 6 months if PSA< reached
 </p>
- Overall survival
 - Time to next systemic prostate cancer therapy - Proportion of patient having received next systemic prostate cancer therapy at 24, 36 and 52 months.

1. proportion of patients without iADT treatment at one year

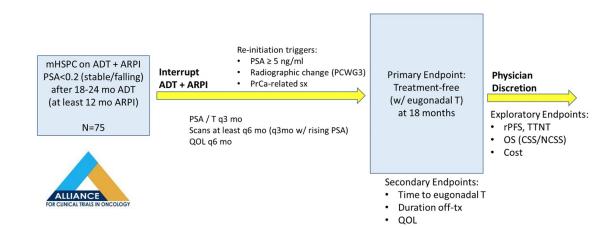
Toxicity with CTCAE v5

Co-Primary (hierarchical):

2. Overall survival at 3 years

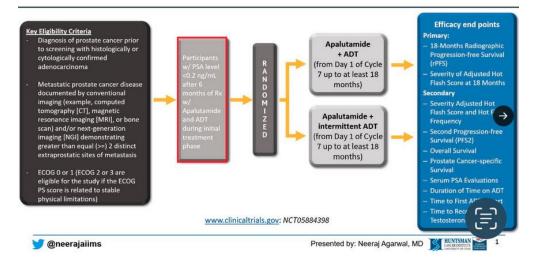
Endpoints:

Secondary


- Quality of life with QLQ-C30/PR-25
- Health economics parameters (e.g. Incremental cost

PI: Dr Bertand Tombal

Death


A-DREAM

A Phase 2 Trial of ADT Interruption in Patients Responding Exceptionally to AR-pathway Inhibitor In mHSPC

LIBERTAS Trial: Phase 3 Trial Design

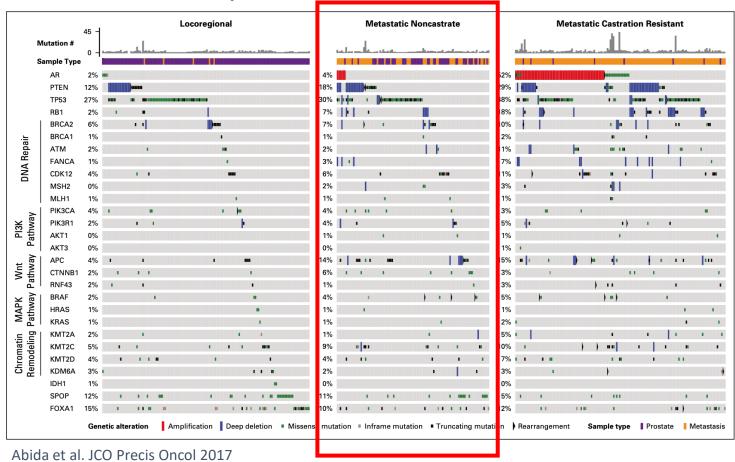
from baseline by 90%); MAB: Maximum androgen blockade

- **How do we design trials** to prove that de-escalation is not actually harming our patients?
- How do we **measure the benefit** of de-escalation?
- Non-inferiority trials are hard to design and recruit
- Will the **number of events** be enough (especially in low-risk patients)? What are the conclusions if a study is under-powered?
- Are endpoints **not based on overall survival** acceptable?

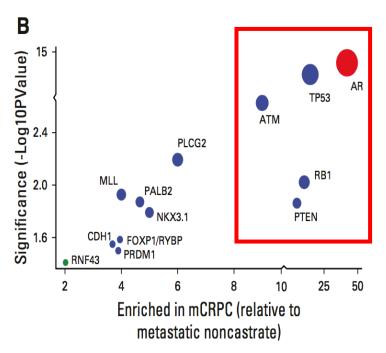
6-7 JULIO 2023

GU-Alliance for Research and Development

- Systemic therapy options
- Choice of systemic therapy
- Radiotherapy to the primary tumor
- Intensifying / Deintensifying treatment
- Molecular biomarkers



GU-Alliance for Research and Development


Genomic alterations in mHSPC

How does the landscape evolve?

Greater mutational burden in mCRPC than mHSPC & locoregional disease

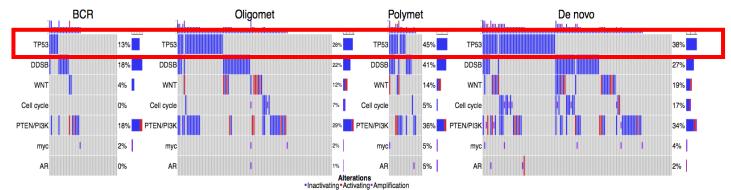
- AR is the most enriched gene in mCRPC, absent in mHSPC
- TP53, RB1, PTEN, ATM enriched in mCRPC
- SPOP enriched in locoregional & mHSPC
- No differences in BRCA2

What do we want molecular biomarkers for?

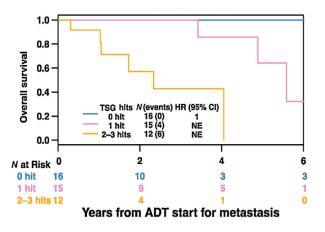
- Assessment of <u>prognosis</u>
 - Is the disease indolent or aggressive?
 - Can I wait and give less intensive treatment (sparing toxicity), or will the disease progress rapidly & maybe deteriorate before all life-prolonging therapies can be administered?
 - Prognostic value is **independent of the specific benefit** (i.e. will the patient live more with treatment A than he would have with treatment B or with no treatment?) **from therapy**
- **Predictive** biomarkers
 - Can I estimate the relative benefit of therapy options that are already approved?
 - Can I guide my choice of treatment A over treatment B based on the likelihood of an improvement in outcome?
- Development of <u>Targeted</u> therapies
 - Can I idenfity molecular targets that are sensitive to specific drugs?
 - Can I treat the tumor based on its biology?

6-7 JULIO 2023

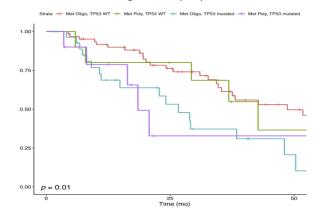
GU-Alliance for Research and Development



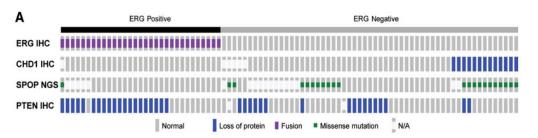
Genomic alterations and prognosis in mHSPC


Loss of function of tumor supressors is associated with adverse prognosis

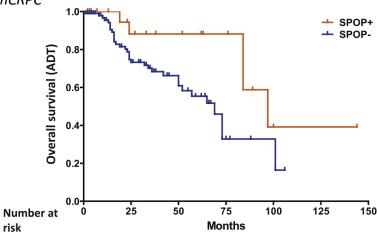
Increased TP53 alterations with higher volume of metastatic disease


guardsymposium2023

Mutations in the TP53, RB1 and PTEN suppressor genes associated with adverse outcome



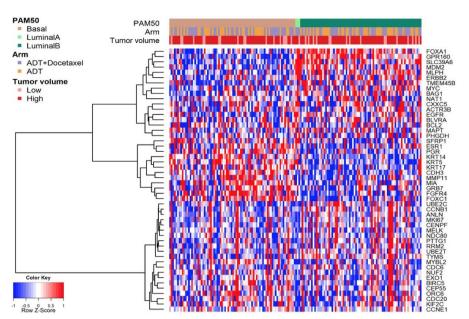
TP53 mutations associated with adverse prognosis in both oligo- and polymetastatic disease



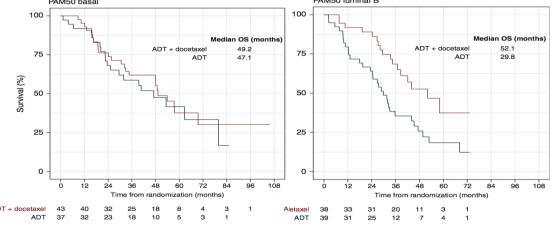
SPOP mutations associated with favorable prognosis

Most frequently mutated gene in prostate cancer Mutations in the MATH domain

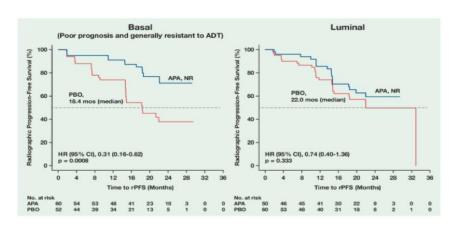
SPOP mutation associated with higher response rate and time on abiraterone in mCRPC


GU-Alliance for Research and Development

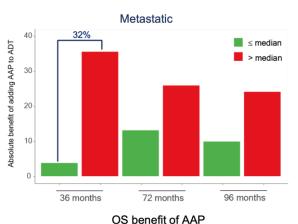
Gene Expression Profiles and Outcome


In prostate cancer, luminal B and basal subtipes are associated with the highest and lowest AR activity, respectively

	mHSPC	Localized
Basal	52.1%	33.2%
Luminal B	46.1%	32.7%
Luminal A	1.8%	34.1%

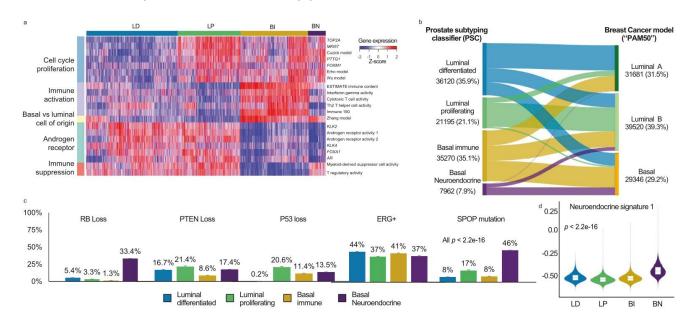


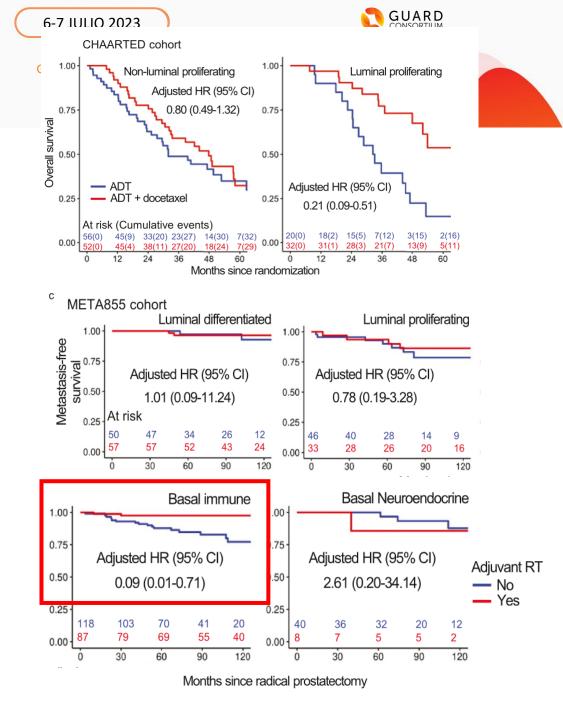
Hamid et al. Ann Oncol 2021;23(9):157-1166. Feng et al. ASCO 2020; Abstract #5521 Parry et al. ESMO 2022; Abstract #1358^o.


CHAARTED trial: benefit from ADT + Docetaxel Luminal B patients PAM50 basal PAM50 luminal B

Ensayo TITAN: greater benefit in patients with basal subtype

STAMPEDE: high risk (DECIPHER) associated with greater absolute benefit

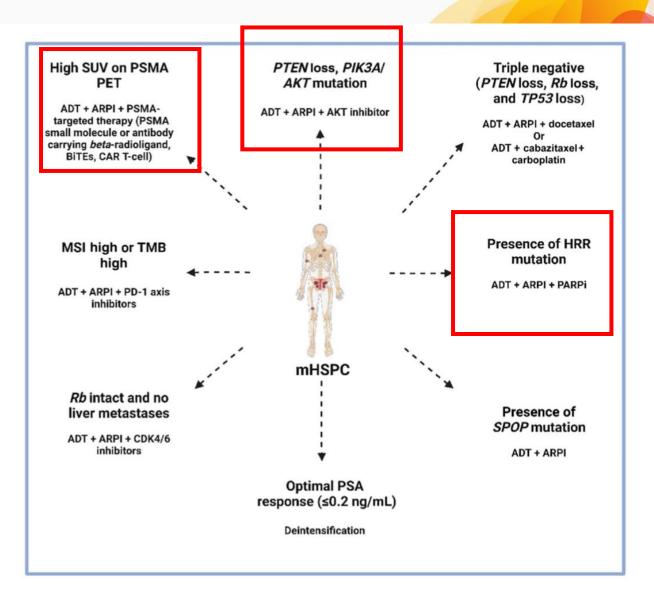



Luminal/Basal Phenotypes in Prostate Cancer

- Novel PSC classification based on transcriptomic analysis of PC samples
- Better performance than PAM50 (derived from breast cancer)
- Model training cohort (n = 32,000) and an evaluation cohort (n = 68,547)
- 4 groups: luminal differentiated, luminal proliferating, basal immune, basal neuroendocrine
- Potential implications for therapy

guardsymposium2023

@GuardConsortium



GU-Alliance for Research and Development

Targeted therapies in mCSPC

Some potential biomarker-guided strategies for the treatment of mCSPC

6-7 JULIO 2023

GU-Alliance for Research and Development

Previous Docetavel Therapy in

Ongoing clinical trials of targeted therapy in mCSPC

Trial	Phase	Target Enrollment	Inclusion Criteria	Previous Docetaxel Therapy in the Metastatic Hormone- Sensitive Setting	Intervention Arm	Control Arm	Primary End Point
PSMAddition (NCT04720157)	III	1,126	PSMA-positive disease on a ⁶⁸ Ga-PSMA-11 PET/CT scan Treatment-naïve or up to 45 days of ADT before inclusion or up to 45 days of ARSI	Not allowed	¹⁷⁷ Lu-PSMA-617 intravenously once every 6 weeks for six cycles plus standard of care (ADT plus ARSI)	Standard of care (ADT plus ARSI)	rPFS
AMPLITUDE (NCT04497844)	III	788	Positive for deleterious germline or somatic homologous recombination repair gene mutations Ongoing ADT Radiation with curative intent or previous treatment with PARPi not allowed Up to 6 months of ADT or 45 days of abiraterone acetate and prednisone allowed before random assignment	Allowed	Niraparib 200 mg orally once daily plus abiraterone acetate 1,000 mg orally once daily plus prednisone 5 mg orally once daily	Placebo plus abiraterone acetate 1,000 mg once daily plus prednisone 5 mg once daily	rPFS
TALAPRO-3 (NCT04821622)	III	550	Positive for deleterious germline or somatic homologous recombination repair gene mutations Ongoing ADT Previous docetaxel for mHSPC or previous treatment with a PARPi not allowed ≤3 months of ADT with or without ARSI for mHSPC allowed before random assignment	Not allowed	Talazoparib 0.5 mg orally once daily plus open-label enzalutamide 160 mg orally once daily	Placebo plus open-label enzalutamide 160 mg orally once daily	rPFS
CAPItello-281 (NCT04493853)	III	1,000	Synchronous mHSPC PTEN deficiency on tissue immunohistochemistry Ongoing ADT Previous surgery or radiation with curative intent not allowed	Not allowed within 3 weeks of first dose of study treatment	Capivasertib 400 mg orally twice daily (intermittent weekly dosing schedule) plus abiraterone acetate 1,000 mg orally once daily	Placebo plus abiraterone acetate 1,000 mg orally once daily	rPFS
CYCLONE-03 (NCT05288166)	III	900	High-risk mHSPC (≥4 bone metastases and/or ≥1 visceral metastasis) Ongoing ADT Previous systemic treatment for metastatic prostate cancer not allowed except ADT with or without ARSI up to 3 months before random assignment	Allowed	Abemaciclib plus abiraterone acetate plus prednisone	Placebo plus abiraterone acetate plus prednisone	rPFS

- Metastatic hormone-sensitive prostate cancer is a **clinically heterogeneous disease**
 - Volume of disease and timing of presentation define prognostic subgroups
 - 5-yr OS with ADT alone ranges from 72% (low volume, metachronic) to 26% (hi volume, synchronous)
- Systemic therapy is based on combinations of ADT + novel hormonal agents +/- Docetaxel
- What do we know about the efficacy of systemic therapy?
 - ADT alone and ADT + Docetaxel are not recommended (inferior to ADT doublets and ADT triplets, respectively)
 - No direct comparison between triplet & doublet therapy
 - ADT + NHA + Docetaxel is not recommended in metachronic low volume disease based on lack of efficacy of Docetaxel in this subpopulation

- Triplet or doublet therapy?
 - Only pts fit for chemotherapy are elgible for upfront triplet therapy
 - ADT + NHA alone is favored in pts with good prognosis (low volume) → maximize benefit/toxicity ratio
 - Consider ADT + NHA + Docetaxel in pts with adverse prognosis (hi volume, synchronous, T4) → may not receive all available therapies
 - Not all low volume are good & not all high volume are bad!
 - Patient preference (conocomitant vs sequential treatment) must be taken into consideration
- Radiotherapy to the primary tumor
 - Low volume: **rPFS benefit & delay/prevention of GU sypmtoms**. Conflicting results on OS (STAMPEDE, PEACE-1)
 - High volume: delay/prevention of GU sypmtoms. No OS or rPFS benefit
 - Discuss in MDT → favor RT in low volume & hi volume if large primary tumor or urinary symptoms?

- De-intensification strategies
 - A significant proportion of our patients are likely over-treated. Reducing toxicity in them is highly appealing
 - Proving that a de-intensification approach does not impact negatively and has significant benefits in prospective trials is challenging
- Molecular biomarkers
 - Genomic biomarkers have mostly prognostic value (adverse: PTEN, Rb1, TP53 or favorable: SPOP)
 - Burden of genomic alterations is associated with aggressiveness
 - Gene expression profiling may help identify patients that derive greater benefit from chemotherapy combinations (luminal B) or hormone agents alone.
 - Clinical validation in well designed, prospective trials is needed before any of the potential biomarkers can be used in the clinic

GU-Alliance for Research and Development

guardsymposium2023

@GuardConsortium

dlorenteestelles@seom.org

