

GUARD SYMPOSIUM

guardsymposium2023

🔰 @GuardConsortium

GU-Alliance for Research and Development

6-7 JULIO 2023

First line treatment (for mRCC)

Prof Roberto Iacovelli

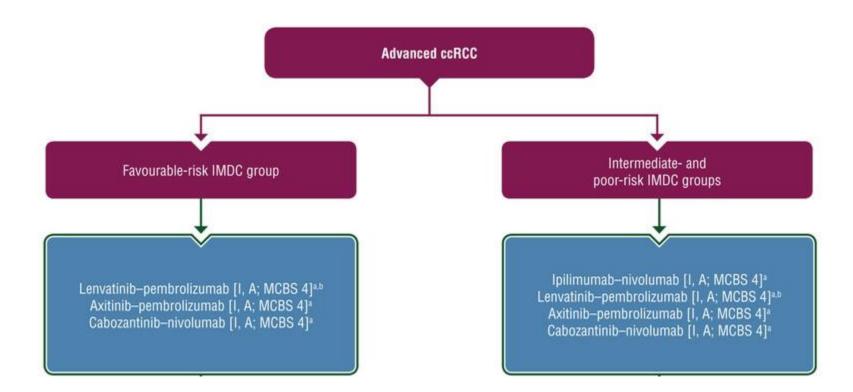
Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

UNIVERSITÀ CATTOLICA del Sacro Cuore

Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore

guardsymposium2023
@GuardConsortium

GU-Alliance for Research and Development



Conflicts of interest

Type of support	Sponsor
Advisory board	Astellas, BMS, Ipsen, Janssen, Merk, MSD, Pfizer, Sanofi, Bayer, EISAI.
Consultant	Astellas, Ipsen, Merk, MSD, Pfizer, EISAI
Research support (inst)	BMS, Pfizer
PI clinical trial	BMS, Exelixis, Ipsen, Lilly, MSD, Seagen.



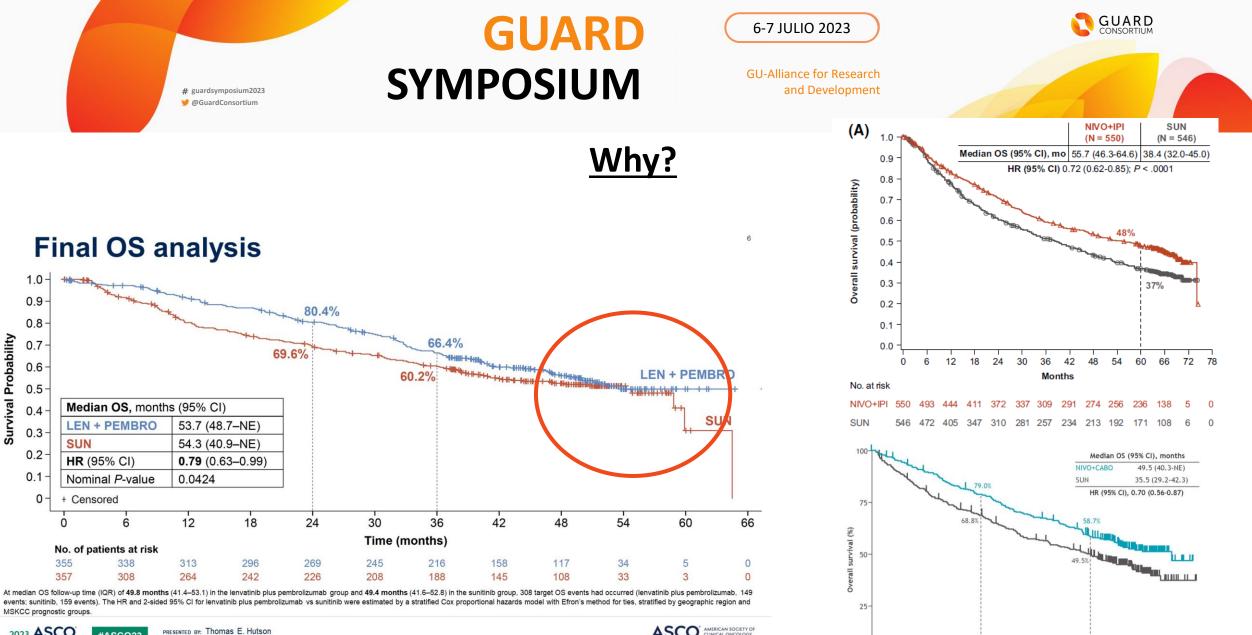
My questions about first line:

- Are all combos equal?
- Is the expected benefit the same for each prognostic group?
- If there are, what are the reasons for these differences?
- How can we improve the management of the first line?



What we know about doublets?

Study and outcome	CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426 ² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR⁴ Len/pem vs Su
Patients	550 vs. 546	432 vs. 429	323 vs. 328	355 vs. 357
mFU (mos)	67.7	67.0	44.0	49.8
IMDC (F vs. I vs. P) (%)*	23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
mPFS (mos) HR (95%Cl	12.3 vs. 12.3 0.86 (0.73-1.01)	15.7 vs. 11.1 0.69 (0.59-0.81)	16.6 vs. 8.4 0.58 (0.48-0.71)	23.9 vs. 9.2 0.47 (0.38-0-57)
mOS (mos) HR (95%Cl	55.7 vs. 38.4 0.72 (0.62-0.85)	47.2 vs. 40.8 0.84 (0.71-0.99)	49.5 vs. 35.5 0.70 (0.56-0.87)	53.7 vs. 54.3 0.79 (0.63-0.99)
24mos OS (%)	71 vs. 61	73 vs. 65	70 vs. 60	80.4 vs. 69.6
ORR (%)	39 vs. 32	60.6 vs. 39.6	55.7 vs. 28.4	71.3 vs. 36.7
mDOR	NR vs. 24.8	23.6 vs. 15.3	23.1 vs. 15.2	26.7 vs. 14.7



What we know about doublets?

Study and outcome	CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426 ² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR ⁴ Len/pem vs Su
Patients	550 vs. 546	432 vs. 429	323 vs. 328	355 vs. 357
mFU (mos)	67.7	67.0	44.0	49.8
IMDC (F vs. I vs. P) (%)*	23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
mPFS (mos) HR (95%Cl	12.3 vs. 12.3 0.86 (0.73-1.01)	15.7 vs. 11.1 0.69 (0.59-0.81)	16.6 vs. 8.4 0.58 (0.48-0.71)	23.9 vs. 9.2 0.47 (0.38-0-57)
mOS (mos) HR (95%Cl	55.7 vs. 38.4 0.72 (0.62-0.85)	47.2 vs. 40.8 0.84 (0.71-0.99)	49.5 vs. 35.5 0.70 (0.56-0.87)	53.7 vs. 54.3 0.79 (0.63-0.99)
24mos OS (%)	71 vs. 61	73 vs. 65	70 vs. 60	80.4 vs. 69.6
ORR (%)	39 vs. 32	60.6 vs. 39.6	55.7 vs. 28.4	71.3 vs. 36.7
mDOR	NR vs. 24.8	23.6 vs. 15.3	23.1 vs. 15.2	26.7 vs. 14.7

2023 ASCO ANNUAL MEETING #ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

ASCO AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

> No. at risk NIVO+CABO

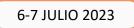
24

30

guardsymposium2023 🔰 @GuardConsortium

6-7 JULIO 2023

GU-Alliance for Research and Development GUARD CONSORTIUM


and Develop

L	Events/P EN + PEMBP			Hazard Ratio (95% CI) EN + PEMBRO vs SUN	Median (I LEN + PEMBI	
Overall	149/355	159/357	⊢ ● -{	0.79 (0.63–0.99)	53.7	54.3
Geographic Region						
Vestern Europe + North America	82/198	89/199	⊢ ● -i	0.78 (0.57-1.05)	NR	54.8
Rest of the World	67/157	70/158	⊢● ∔I	0.81 (0.58-1.14)	52.2	54.3
MSKCC Risk Group						
Favorable	27/96	31/97		0.89 (0.53-1.50)	NR	59.9
Intermediate	104/227	108/228		0.81 (0.62-1.06)	51.8	46.9
Poor	18/32	20/32	⊢ ● − − − − − − − − − −	0.59 (0.31–1.12)	37.2	17.1
IMDC Risk Group						
Favorable	31/110	39/124	⊢ ei – I	0.94 (0.58-1.52)	NR	59.9
Intermediate	99/210	92/192	⊢ ● ∔I	0.85 (0.63-1.13)	47.9	44.4
Poor	19/33	27/37	⊢ − ● −− į	0.47 (0.25–0.87)	37.2	10.4
PD-L1 Status						
CPS≥1	49/107	58/119		0.84 (0.57-1.23)	52.2	54.8
CPS<1	46/112	46/103		0.77 (0.51–1.16)	NR	NR
		0.1	1	10		
		Favo	rs LEN + PEMBRO Favors SUN			

Why?

guardsymposium2023
 @GuardConsortium

GU-Alliance for Research and Development

What we know about doublets in favorable prognosis?

Table 1 – Initial and updated results for OS for patients with IMDC favourable prognosis enrolled in phase 3 trials investigating anti-PD-1/PD-L1-based combinations over sunitinib in mRCC

Trial	Initial analysis	Initial analysis			
	mFU (mo)	HR for OS (95% CI)	mFU (mo)	HR for OS (95% CI)	
CheckMate-214 [1]	25.2	0.83 (0.35-1.97)	67.7	0.94 (0.65-1.37)	
Javelin Renal 101 [3]	9.9	0.80 (0.33-1.96)	13.0 ^a	0.81 (0.34-1.96)	
KeyNote-426 [4]	12.8	1.06 (0.60-1.86)	42.8	1.17 (0.76-1.80)	
CheckMate-9ER [5]	18.1	0.84 (0.35-1.97)	32.9	1.03 (0.55-1.92)	
CLEAR [6]	26.6	1.15 (0.55-2.40)	33.7	1.22 (0.66-2.26)	
CI = confidence interval; HR	CI = confidence interval; HR = hazard ratio; IMDC = International mRCC Database Consortium; mFU = median follow-up; mRCC = metastatic renal cell				

carcinoma; OS = overall survival.

^a Minimum follow-up.

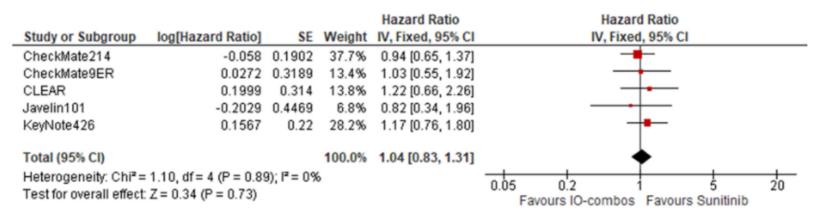



Fig. 1 – Meta-analysis of data for overall survival for patients with IMDC favourable prognosis enrolled in phase 3 trials investigating anti-PD-1/PD-L1-based combinations over sunitinib in mRCC. IMDC = International mRCC Database Consortium; mRCC = metastatic renal cell carcinoma; SE = standard error; CI = confidence interval; IV = inverse variance; df = degrees of freedom; IO = immunotherapy.

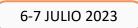


What we know about doublets in favorable prognosis?

Study and outcome	CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR⁴ Len/pem vs Su
Patients	125 vs. 124	136 vs. 131	74 vs. 72	110 vs. 124
mFU (mos) [#]	67.7	67.0	44.0	49.8
IMDC (F vs. I vs. P) (%)*	23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
mPFS (mos) HR (95%Cl	12.4 vs. 28.9 1.60 (1.13 – 2.26)	20.7 vs. 17.9 0.76 (0.57 – 1.02)	21.4 vs. 13.9 0.75 (0.50 – 1.13)	28.6 vs. 12.9 0.50 (0.35 – 0.71)
mOS (mos) HR (95%Cl	74.1 vs. 68.4 0.94 (0.65 – 1.37)	60.3 vs. 62.4 1.10 (0.79 – 1.54)	NR vs. 40.7 1.07 (0.63 – 1.79)	NR vs. 59.9 0.94 (0.58 – 1.52)
24mos OS (%)	≈83 vs. 86	≈85 vs. 88	≈80 vs. 82	≈95 vs. 90
ORR (%)	30.0 vs. 52.0	68.8 vs. 50.4	66.2 vs. 44.4	NA

What we know about doublets in favorable prognosis?

Study and outcome	CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426 ² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR ⁴ Len/pem vs Su
Patients	125 vs. 124	136 vs. 131	74 vs. 72	110 vs. 124
mFU (mos)#	67.7	67.0	44.0	49.8
IMDC (F vs. I vs. P) (%)*	23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
mPFS (mos) HR (95%Cl	12.4 vs. 28.9 1.60 (1.13 – 2.26)	20.7 vs. 17.9 0.76 (0.57 – 1.02)	21.4 vs. 13.9 0.75 (0.50 – 1.13)	28.6 vs. 12.9 0.50 (0.35 – 0.71)
mOS (mos) HR (95%Cl	74.1 vs. 68.4 0.94 (0.65 – 1.37)	60.3 vs. 62.4 1.10 (0.79 – 1.54)	NR vs. 40.7 1.07 (0.63 – 1.79)	NR vs. 59.9 0.94 (0.58 – 1.52)
24mos OS (%)	≈83 vs. 86	≈85 vs. 88	≈80 vs. 82	≈95 vs. 90
ORR (%)	30.0 vs. 52.0	68.8 vs. 50.4	66.2 vs. 44.4	NA

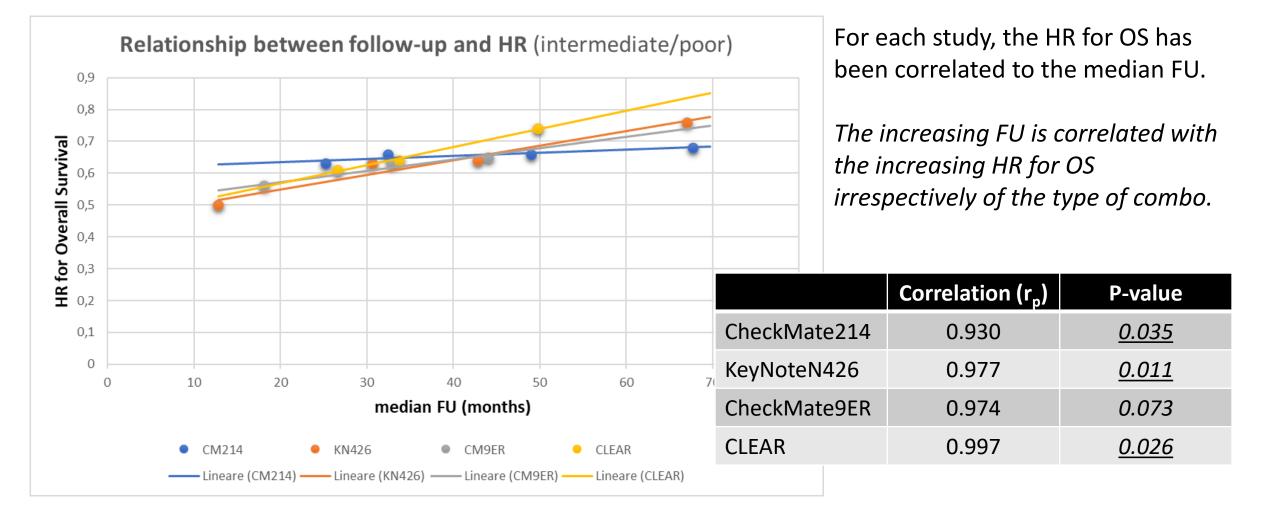


What do we not know about doublets in favorable prognosis?

Why the increased PFS did not translate in an OS benefit for patients with favourable prognosis?

What we know about doublets in intermediate-poor prognosis?

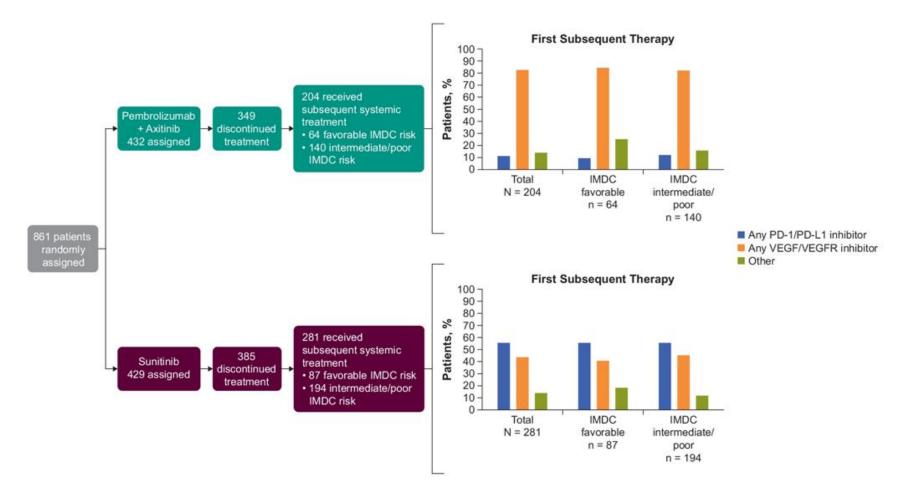
Study and outcome	CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426 ² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR ⁴ Len/pem vs Su
Patients	425 vs. 422	294 vs. 298	249 vs. 256	243 vs. 229
mFU (mos) [#]	67.7	67.0	44.0	49.8
IMDC (F vs. I vs. P) (%)*	23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
mPFS (mos) HR (95%Cl	11.6 vs. 8.3 0.73 (0.61 – 0.87)	13.8 vs. 8.3 0.68 (0.56 – 0.82)	16.4 vs. 7.1 0.55 (0.45 – 0.69)	22.1 vs. 5.9 0.43 (0.34 – 0.55)
mOS (mos) HR (95%Cl	47.0 vs. 26.6 0.68 (0.58 – 0.81)	42.2 vs. 29.3 0.76 (0.62 – 0.93)	49.5 vs. 29.2 0.65 (0.51 – 0.83)	47.9 vs. 34.3 0.74 (0.57 – 0.96)
24mos OS (%)	≈68 vs. 55	≈68 vs. 55	≈70 vs. 55	≈75 vs. 60
ORR (%)	42.0 vs. 27.0	56.8 vs. 34.9	52.6 vs. 23.8	NA



What we know about doublets in intermediate-poor prognosis?

Study and outcome	CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR ⁴ Len/pem vs Su
Patients	425 vs. 422	294 vs. 298	249 vs. 256	243 vs. 229
mFU (mos)#	67.7	67.0	44.0	49.8
IMDC (F vs. I vs. P) (%)*	23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
mPFS (mos) HR (95%Cl	11.6 vs. 8.3 0.73 (0.61 – 0.87)	13.8 vs. 8.3 0.68 (0.56 – 0.82)	16.4 vs. 7.1 0.55 (0.45 – 0.69)	22.1 vs. 5.9 0.43 (0.34 – 0.55)
mOS (mos) HR (95%Cl	47.0 vs. 26.6 0.68 (0.58 – 0.81)	42.2 vs. 29.3 0.76 (0.62 – 0.93)	49.5 vs. 29.2 0.65 (0.51 – 0.83)	47.9 vs. 34.3 0.74 (0.57 – 0.96)
24mos OS (%)	≈68 vs. 55	≈68 vs. 55	≈70 vs. 55	≈75 vs. 60
ORR (%)	42.0 vs. 27.0	56.8 vs. 34.9	52.6 vs. 23.8	NA

The follow up is affecting the OS magnitude of benefit



Why the increased PFS did not translate in an OS benefit for patients with favourable prognosis?

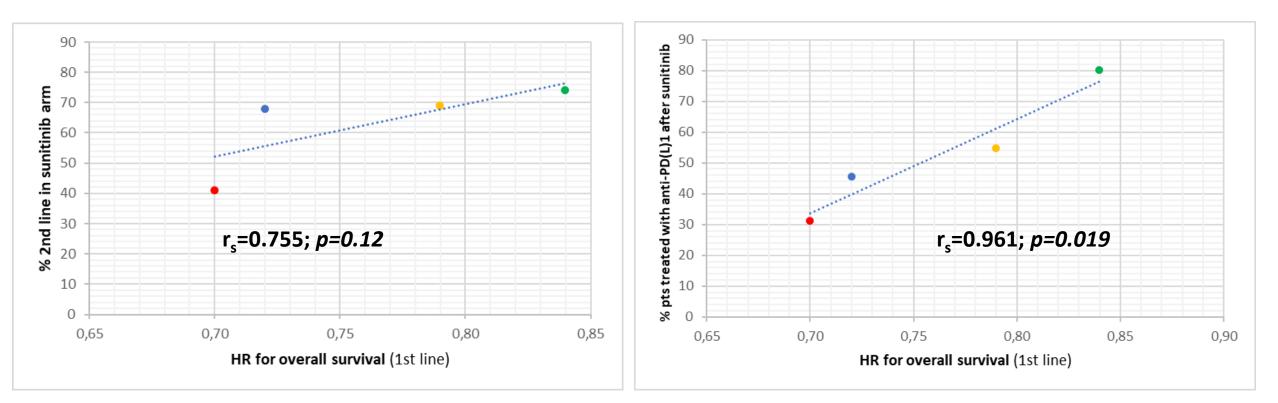
Why the longer FUp is affecting the advantage in OS in patients with intermediate/poor prognosis?


Rate & quality of subsequent therapies in combo studies

The analysis of KeyNote426 confirms as patients in the control arm received more frequently anti-PD(L)1 therapies at progression.

Rate of subsequent therapies in combo studies

Study and outcome	CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426 ² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR⁴ Len/pem vs Su
Patients	425 vs. 422	294 vs. 298	249 vs. 256	355 vs. 357
mFU (mos) [#]	67.7	67.0	44.0	49.8
IMDC (F vs. I vs. P) (%)*	23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
mOS (mos) HR (95%Cl	55.7 vs. 38.4 0.72 (0.62-0.85)	47.2 vs. 40.8 0.84 (0.71-0.99)	49.5 vs. 35.5 0.70 (0.56-0.87)	53.7 vs. 54.3 0.79 (0.63-0.99)
Subsequent Systemic Tx (%)	55 vs. 68	62.2 vs. 73.9	25 vs. 41	51.0 vs. 68.9
Anti-VEGFR(%)		86.9 vs. 72.0	21 vs. 19	45.9 vs. 45.4
Anti-PD(L)1	13.5 vs. 45.6	26.6 vs. 80.0	7 vs. 31	15.8 vs. 54.6



Rate of subsequent therapies in combo studies

CheckMate214 ¹ Ipi/nivo vs Su	KeyNote426 ² Axi/pem vs Su	CheckMate9ER ³ Cabo/nivo vs Su	CLEAR⁴ Len/pem vs Su
425 vs. 422	294 vs. 298	249 vs. 256	355 vs. 357
67.7	67.0	44.0	49.8
23 vs. 61 vs. 17	32 vs. 55 vs. 13	23 vs. 58. vs 19	27 vs. 64 vs. 9
55.7 vs. 38.4 0.72 (0.62-0.85)	47.2 vs. 40.8 0.84 (0.71-0.99)	49.5 vs. 35.5 0.70 (0.56-0.87)	53.7 vs. 54.3 0.79 (0.63-0.99)
55 vs. 68	62.2 vs. 73.9	25 vs. 41	51.0 vs. 68.9
	86.9 vs. 72.0	21 vs. 19	45.9 vs. 45.4
13.5 vs. 45.6	26.6 vs. 80.0	7 vs. 31	15.8 vs. 54.6
	425 vs. 422 67.7 23 vs. 61 vs. 17 55.7 vs. 38.4 0.72 (0.62-0.85) 55 vs. 68	425 vs. 422 294 vs. 298 67.7 67.0 23 vs. 61 vs. 17 32 vs. 55 vs. 13 55.7 vs. 38.4 47.2 vs. 40.8 0.72 (0.62-0.85) 0.84 (0.71-0.99) 55 vs. 68 62.2 vs. 73.9 86.9 vs. 72.0	425 vs. 422294 vs. 298249 vs. 25667.767.044.023 vs. 61 vs. 1732 vs. 55 vs. 1323 vs. 58. vs 1955.7 vs. 38.447.2 vs. 40.849.5 vs. 35.50.72 (0.62-0.85)0.84 (0.71-0.99)0.70 (0.56-0.87)55 vs. 6862.2 vs. 73.925 vs. 4186.9 vs. 72.021 vs. 19

Correlation between rate & quality of second line



In the control arm, the second line immunotherapy affects the final HR for OS more than the absolute rate of patients who received subsequent therapies.

CheckMate214
KeyNote426
CheckMate9ER

CLEAR

Follow up and rate of 2nd line IO affect HR for OS in combo studies

TKI-IO combo	HR for OS	Follow up (mos)	IO after sunitinib
KeyNote 426 ²	0.84	67.0	80.0%
CLEAR ⁴	0.79	49.8	54.6%
CheckMate 9ER ³	0.70	44.0	31.0%

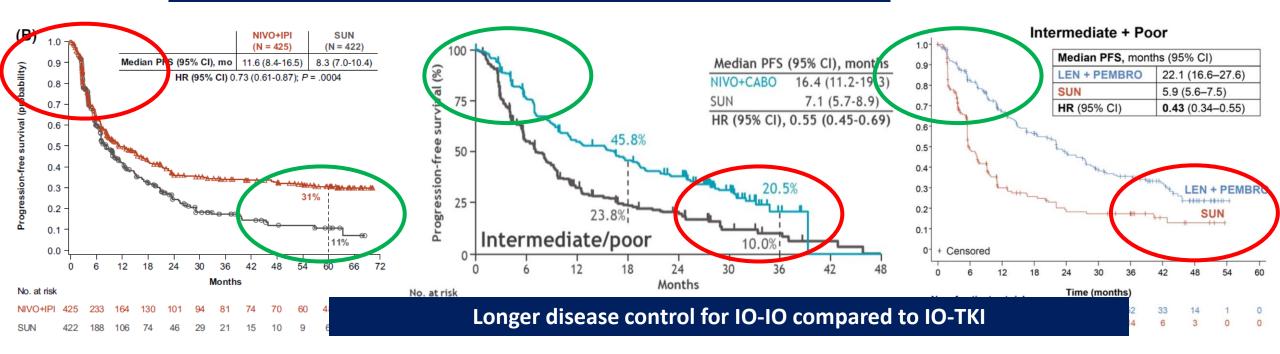
IO-IO combo	HR for OS	Follow up	IO after sunitinib
CheckMate 214 ¹	0.72	67.0	45.6%

Studies with worse HR have also the longer follow up and the higher rate of patients treated with IO after sunitinib.

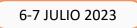
Conclusions about the current options for 1st line therapy

- Patients with **favourable prognosis do not require the use of the IO-based combo** in majority of cases.
- Patients with favourable prognosis treated with sunitinib have similar OS to those treated with combos because of their greater chance to receive immunotherapy in second line. Therefore, the sequential therapy is a feasible strategy.
- Patients with intermediate/poor prognosis have the greatest benefit from IO-based combos.
- Nevertheless, the magnitude of benefit for IO-based combos is progressively decreasing (probably) because of the increase of the follow up and of the number of patients who are receiving IO after sunitinib.
- Considering the difference in the length of follow up and rate/quality of subsequent lines, **any comparison between combos is useless.**

guardsymposium2023
 ØGuardConsortium

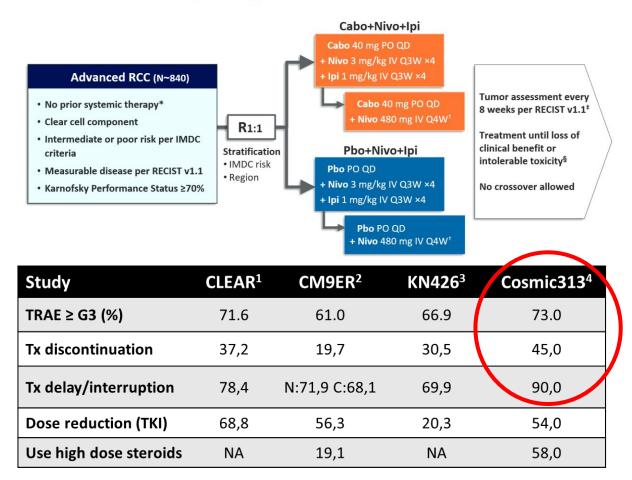


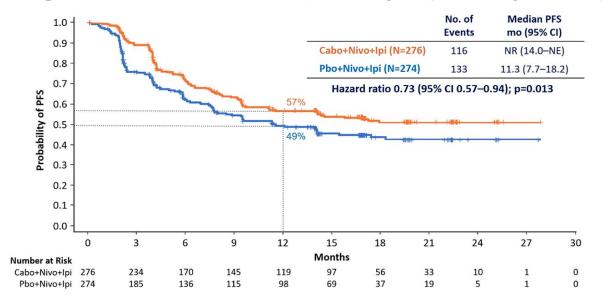
GU-Alliance for Research and Development


How can we choose? It depends by your need...

High risk of primary progression for IO-IO compared to IO-TKI

Next strategies in 1st line


- Intensification
- Immunestimulation (boost)
- Deintensification



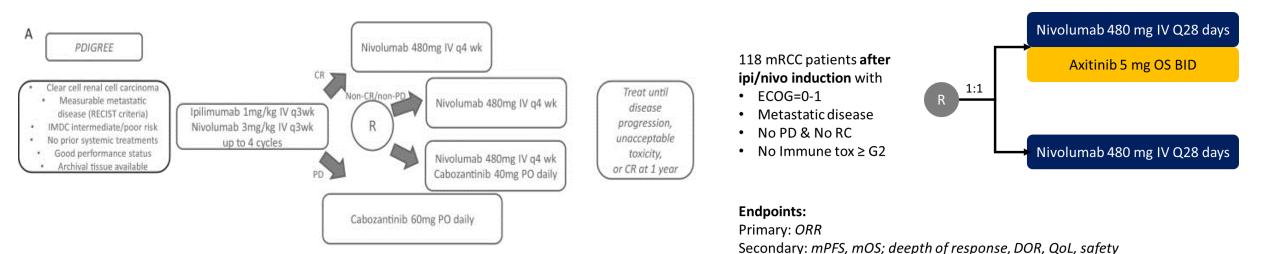
Next strategies for improvement of 1st line: intensification

COSMIC-313 Study Design



Progression-Free Survival: Final Analysis (PITT Population)

- N Engl J Med 2021;384:1289-300. 1.
- N Engl J Med 2021;384:829-41. 2.
- N Engl J Med 2019;380:1116-27 3.
- Choueiri TK, ESMO 2022 4.

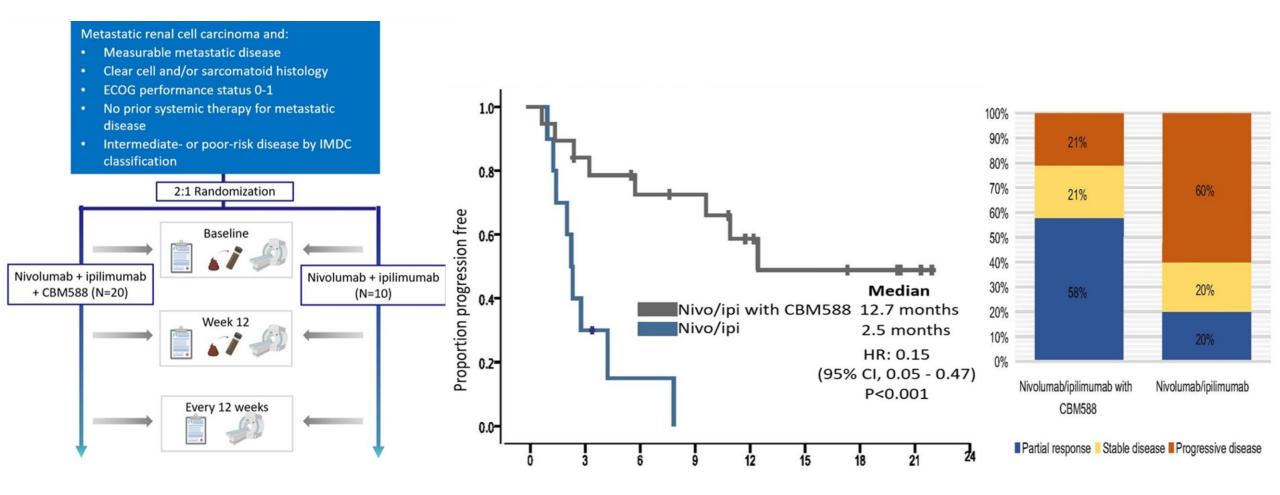


GU-Alliance for Research and Development

Next strategies for improvement of 1st line: intensification

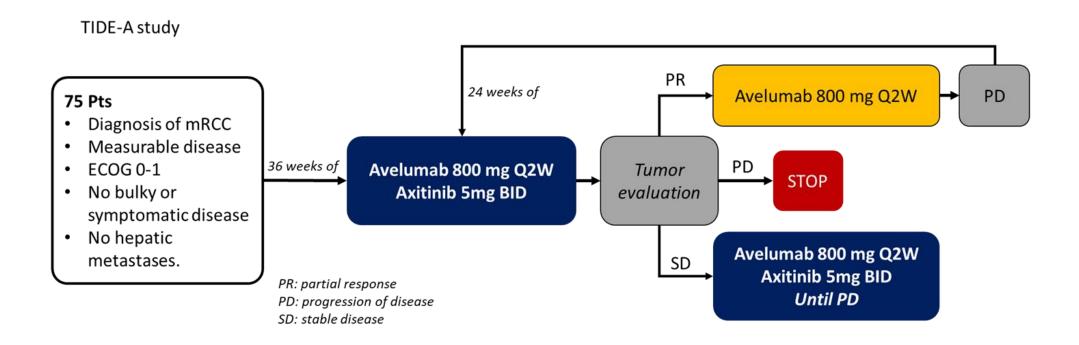
Doublet followed by doublet (or a different way to be triplet!)

PDGREE trial


AXIN trial

NCT03793166

NCT05817903



Next strategies for improvement of 1st line: immunestimulation

Next strategies for improvement of 1st line: deintensification

- First line therapy is the most important step for the management of mRCC patient.
- The **choice** among the available therapies should be **based on clinical need** and <u>symptomatic patients</u> should be treated with one of the available <u>IO-TKI combos</u>.
- **Triplet therapy cannot be offered** considering toxicity and lack of OS benefit. <u>Sequence</u> of two doublets seems to be more reasonable and results are awaited.
- Next years will offer new data for a **tailored first line**, *please be patient!*