Zaragoza 26-29 septiembre 2023

Estado del arte y alternativas futuras en... Cáncer de ovario

Luis Manso MD PhD Head Gynaecologic Cancer Program Medical Oncology Division 12 de Octubre University Hospital.

Disclosures

- Employment: Hosp. Univ. 12 de Octubre
- Consultant or Advisory Role: Lilly, Tesaro, Astra-Zeneca,
 Roche, Novartis, Pfizer, Celgene,
- ☐ Research Funding: Tesaro
- ☐ Speaking: Lilly, Roche, Astra-Zeneca, Novartis, Pfizer

TOPICS

- Introduction.
- First-line maintenance in advanced ovarian cancer (AOC).
- AOC relapse.
- Platinum resistant.

TOPICS

- Introduction.
- First-line maintenance in advanced ovarian cancer (AOC).
- AOC relapse.
- Platinum resistant.

RECENT OVARIAN CANCER EPIDEMIOLOGY

Ovarian Cancer: Clinical Impact

Biomarkers play an important role in diagnosing and defining patient populations in ovarian cancer

Half of high-grade serous OC exhibits a high degree of genomic instability due to deficiencies in homologous recombination

BRCA, breast cancer gene; BRIP1, BRCA1-interacting protein; gBRCAm, germline BRCA mutant; HRd, homologous recombination deficient; HRp, homologous recombination proficient; OC, ovarian cancer; tBRCAm, tumour BRCA mutant.

^{1.} Abkevich V, et al. Br J Cancer 2012;107:1776–82; 2. The Cancer Genome Atlas Research Network. Nature 2011;474:609–15.

Maintenance therapy in advanced ovarian cancer

Bevacizumab	PARPi in relapse	PARPi in firstline
Perren TMirza MR, et al. NEJM 2011	Ledermann J, et al. NEJM 2012	Moore K, et al. NEJM 2018
Burger R, et al. NEJM 2011	Mirza MR, et al. NEJM 2016	Gonzales-Martin AMirza MR, et al. NEJM 2019
	Pujade-Lauraine E, et al. Lancet Oncol 2017	Ray-Coquard I, et al NEJM 2019
	Coleman RL, et al. Lancet 2017	

TOPICS

- Introduction.
- First-line maintenance in advanced ovarian cancer (AOC).
- AOC relapse.
- Platinum resistant.

PARPi 1L maintenance therapy options in advanced ovarian cancer

United States and Europe

Niraparib ^{1,2}

All biomarker subgroups

Olaparib 3,4

BRCAm

PLUS Bev

Olaparib 3,4

BRCAm and/or HRd

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf

^{2. &}lt;a href="https://www.ema.europa.eu/en/medicines/human/EPAR/zejula">https://www.ema.europa.eu/en/medicines/human/EPAR/zejula

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208558s001lbl.pdf

^{4.} https://www.ema.europa.eu/en/medicines/human/EPAR/lynparza

Magnitude of benefit with PARPi is related to biomarker Even patients with HRp (HRD-) benefit from PARPi

	SOLO-1 ¹	PRIMA ²	PAOLA-1 ³	ATHENA-MONO ⁴	PRIME ⁵
PARPi	Olaparib	Niraparib	Olaparib + Bev	Rucaparib	Niraparib
Control	Placebo	Placebo	Bevacizumab	Placebo	Placebo
Population	BRCAmut	All comers	All comers	All comers	All comers (Chinese)
HRD test	NA	MyChoice	MyChoice	Foundation-One	BGI
BRCAmut	0.33 (0.25–0.43)	0.40* (0.27–0.62)	0.31* (0.20–0.47)	0.31* (0.20–0.47)	0.40* (0.23-0.68)
BRCAwt/HRD+	-	0.50* (0.31-0.83)	0.43* (0.28-0.66)	0.58* (0.33-1.01)	0.58* (0.36-0.93)
BRCAwt/HRD-	-	0.68* (0.49-0.94)	0.92* (0.72-1.17)	0.65* (0.45-0.95)	0.41* (0.25-0.65)

^{*}exploratory

The aim of the table is not the cross-trial comparison

Moore. NEJM 2018; 2. Gonzalez-Martin. NEJM 20193; 3. Ray-Coquard. NEJM 2019;
 Monk. J Clin Oncol 2022; 5. Li.SGO 2022

+++

SOLO1 updated Time to First Subsequent Therapy

Surrogate for updated PFS

SOLO1 updated Time to First Subsequent Therapy

Surrogate for updated PFS

PRIMA LT updated analysis BRGAWIE/d-IRIO durable PFS benefit in patients with newly diagnosed advanced OC at the highest risk of early relapse

BRCAm, BRCA mutated; BRCAwt, BRCA wild-type; HRd, homologous recombination-deficient; HRp, homologous recombination-proficient.

Cl, confidence interval; HRd, homologous recombination deficient; ITT, intent-to-treat; mPFS, median progression-free survival; OC, ovarian cancer; PFS, progression-free survival.

^{1.} González-Martín A, et al. Presented at ESMO 2022 (Poster #530), 9-13 Sep. Paris, France.

Rationale for PARP inhibitors in ovarian cancer

13

BICR-Assessed PFS: Exploratory Subgroups

Data were similar with BICR-assessed PFS for HRD subgroups

Data cutoff date: March 23, 2022.
BICR, blinded independent central radiology review; BRCA, BRCA1 or BRCA2; HR, hazard ratio; HRD, homologous recombination deficiency; LOH, loss of heterozygosity; mut, mutant; NR, not reached; PFS, progression-free survival; wt, wild type

Rationale for PARP inhibitors in ovarian cancer

5y PFS HRD positive excluding tBRCAm

OS subgroup analysis by BRCAm and HRD status

	bevacizumab (N=157)	bevacizumab (N=80)
Events, n (%)	48 (30.6)	37 (46.3)
Median OS, months	75.2 (unstable)†	66.9
5-year OS rate, %	73.2	53.8
PARPi as subsequent treatment, n (%)	38 (24.2)	44 (55.0)
	HR 0.60 (95 %	CI 0.39-0.93)

5-year OS rate

*By central labs; †Unstable median; <50% data maturity; ‡By Myriad myChoice HRD Plus. NR, not reported

Rationale for PARP inhibitors in ovarian

cancer

 Subgroup analysis of PRIMA, PRIME and ATHENA-MONO suggest benefit for monotherapy PARPi maintenance in HRp patients

^{*}PRIME was sponsored by Zai Lab (Shanghai) Co., Ltd. PRIME homologous recombination subgroup data should be interpreted with caution as a different HRD test (BGI HRD test) was applied compared with all other studies using the Myriad myChoice CDx (PRIMA, PAOLA-1). Bev, bevacizumab; BRCAwt, breast cancer gene wild-type; CI, confidence interval; HRD, homologous recombination deficiency; HRp, homologous recombination proficient; LOH, loss of heterozygosity; mPFS, median progression-free survival; PARPi, poly(ADP-ribose)polymerase inhibitor. 1. González-Martín A, et al. N Engl J Med 2019;381:2391–402; 2. Braicu EI, et al. presented at ESGO SoA 2020 (Abstract), 14–16 Dec

KELIM & bevacizumab benefit in ICON-7

OS in patients with low-risk disease

OS in patients with high-risk disease

Unfavorable KELIM <1.0

Favorable KELIM ≥1.0

Chemosensitivity, as assessed by KELIM, may be a complementary covariate to consider for decision-making about bevacizumab prescription. Approximately 47% of high-risk patients may not derive survival benefit from the addition of bevacizumab, however, the remaining 53% patients with poorly chemo-sensitive diseases may achieve the maximum survival gain of approximately 9 months.

Colomban O et al. JNCI Cancer Spectr. 2020;4(3):pkaa026. doi:10.1093/jncics/pkaa026

KELIM & bevacizumab benefit in ICON-7

Hospital Universitario
12 de Octubre

L-F12 heapt to 4 School

OS in patients with low-risk disease

OS in patients with high-risk disease

Niraparib

 Response to platinum-based 1L chemotherapy

sider

Unfavorable KELIM

<1.0

for decision-making about bevacizumab prescription. Approximately 47% of high-risk patients may not derive survival benefit from the addition of bevacizumab, however, the

1.BaisC et al. J NatlCancerInst. 2017 Nov 1;109(11):djx066. doi: 10.1093/jnci/djx066 (GOG-218)

2.AlvarezSecordet al. ClinCancerRes. 2020 Mar 15;26(6):1288-1296. doi: 10.1158/1078-0432.CCR-19-0226. (GOG-218)

3.Buechelet al. GynecolOncol. 2021 May;161(2):382-388. doi: 10.1016/j.ygyno.2021.02.032. (GOG-218)

4.Morgan R et al. BMC Med. 2022 Feb 11;20(1):59. doi: 10.1186/s12916-022-02270-y. (ICON-7)

5.Wimbergeret al. Clin Cancer Res. 2022 Aug 24:CCR-22-1326. doi: 10.1158/1078-0432.CCR-22-1326. (ICON-7)

6.Kommos et al. Clin Cancer Res. 2017 Jul 15;23(14):3794-3801. doi: 10.1158/1078-0432.CCR-16-2196 (ICON-7)

How to chose maintenance for patients in first-line if HR-deficient?

How to chose maintenance for patients in first-line if BRCAwt/HRproficient?

TOPICS

- Introduction.
- First-line maintenance in advanced ovarian cancer (AOC).
- AOC relapse.
- Platinum resistant.

Hospital Universitario 12 de Octubre

Improvement In PFS may not result in an improved OS

Some updated information in maintenance platinum sensitive recurrence......

4 All Remurces

SUMMARY: REVISIONS TO FDA APPROVALS FOR PARP INHIBITORS IN THE MANAGEMENT OF OVARIAN CANCER

FEDERAL REGULATIONS, REPORT, STATEMENTS, CANCER CARE, OVARIAN CANCER Dec 9, 2022 Below is a brief summary of the newly withdrawn FDA approvals for PARP inhibitors in the management of epithelial ovarian cancer.

Withdrawn Indications for Maintenance Therapy

- 2nd or greater line maintenance following response to platinum-based chemotherapy for recurrent platinum-sensitive ovarian cancer
 - · Niraparib
 - Non-germline BRCA 4,7 no longer FDA approved in this setting

Anticipated Withdrawal of Indication for Maintenance Therapy

- 2nd or greater line maintenance following response to platinum-based chemotherapy for recurrent platinum-sensitive ovarian cancer **
 - Rucaparib
 - · Non-BRCA8 will no longer be FDA approved in this setting

Withdrawn Indications for Single-agent Treatment

 Olaparib ^{3,6}, rucaparib ^{2,5} and niraparib ^{9,10} no longer FDA approved in this setting

OVERALL SURVIVAL IN RANDOMIZED TRIALS WITH PARP INHIBITION IN RECURRENCE

Subgroups of patients without BRCA mutation

		NOVA	1	ARIE	L-3 ²	NOR	A^3
		Nlraparib	Placebo	Rucaparib	Placebo	Niaraparib	Placebo
gBRCAwt	N	106	56	106	52	-	-
HRDpos	mOS (mos)	35.6	41.4	36.8	44.7	-	-
	HR 95% CI	1.29 (0.85	-1.95)	1.28 (0.8	34-1.94)	-	
gBRCAwt	N	92	42	107	54	-	-
HRDneg	mOS (mos)	27.9	27.9	28 6	32 6	-	-
	HR 95% CI	0.93 (0.61,	1.41)	1.15 (0.7	78-1.68)	-	
gBRCAwt	N	36	18	33.9	26.7	-	-
HRD unknown	mOS (mos)	29.8	20.2	28.6	32.6	-	-
	HR 95% CI	0.62(0.29,	1.36)	0.67 (0.	30-1.48)	-	

PROGRESSION-FREE SURVIVAL WITH PARP INHIBITORS RANDOMISED TRIALS IN RECURRENT OVARIAN CANCER

			HR	Med PFS months Control	Med PFS months PARPi
Study 19	Olaparib	All	0.35	4.8	8.4
SOLO2*	Olaparib	BRCAm	0.30	5.5	19.1
NOVA	Niraparib	gBRCAm	0.27	5.5	21.0
		non-gBRCAm	0.45	3.9	9.3
ARIEL3	Rucaparib	ITT (all)	0.36	5.4	10.8
ARIEL 4	Rucaparib	BRCAm (all)	0.64	5.7	7.4
SOLO3	Olaparib	BRCAm	0.62	9.2	13.4

Primary endpoint PFS was met in all trials in recurrent ovarian cancer – significantly positive results

POTENTIAL EXPLANATIONS

- 1. Statistical analysis
- 2. Subsequent therapy and crossover
- 3. Safety issues
- 4. Induction of cross-resistance

Cross-resistance

Hospital Universitario Saudiara 12 de Octubre 1-12 initia è invigina de Saudiara

EDITORIAL

Life after SOLO-2: is olaparib really inducing platinum resistance in BRCA-mutated (BRCAm), PARP inhibitor (PARPi)-resistant, recurrent ovarian cancer?

Highly selected, imbalanced, poorer prognosis subset of the SOLO-2 olaparib-treated population has been analysed that may not be representative of the whole population with respect to subsequent platinum response.

Cross-resistance

EXPLORATORY ANALYSIS IN ARIEL-4

Platinum Resistant

Sequence of non-platinum chemotherapy may matter

AGO DESKTOP III: Outcome 1 (OS, ITT population)

(AGO-OVAR OP.4; ENGOT-ov20; NCT01166737)

Chemotherapy plus or minus bevacizumab for platinum-sensitive ovarian cancer patients recurring after a bevacizumab containing first line. The randomized phase 3 trial MITO16B - MaNGO OV2B - ENGOT OV17

PFS Investigator assessed (primary end-point)

	Standard	Experimental	Log Rank P
# events	161	143	
Median PFS	8.8 mos	11.8 mos	<0.001
HR* (95%CI)	0.51 (

^{*}adjusted by: age, PS, centre size, bevacizumab at relapse, chemo backbone, residual disease at initial surgery

TOPICS

- Introduction.
- First-line maintenance in advanced ovarian cancer (AOC).
- AOC relapse.
- Platinum resistant.

Our current situation and reference for new agents...

Therapy	ORR	PFS	OS
Paclitaxel 80 mg/m2 d1,8,15,22 q4w +/- Bevacizumab	30.2% vs 53.3% (Δ 23.1%)	3.9 months vs 10.4 months (HR 0.46)	13.2 months vs 22.4 months (HR 0.65)
PLD 40 mg/m2 q4w +/- Bevacizumab	7.8% vs 13.7% (Δ 5.9%)	3.5 months vs 5.4 months (HR 0.57)	14.1 months vs 13.7 months (HR 0.91)
Topotecan 4 mg/m2 d1,8,15 q4w or 1.25 mg/m2 d1-5 q3w +/- Bevacizumab	0.0% vs 17.0% (Δ 17.0%)	2.1 months vs 5.8 months (HR 0.32)	13.3 months vs 13.8 months (HR 1.09)
Gemcitabine 1000 mg/m2 d1,8 q3w or d1,8,15 q4w	10-29%	3.6-4.7 months	10-12.7 months

A	Target	Expression	Examples
	FRα	67-100%	Mirvetuximab STRO-02 MORAB-B-202
*	Mesothelin	55-100%	Anetumab
	HER-2	2-66%	Trastuzumab-Dx TDM1
	MUC16/CA12 5	70-90%	DMUC5754A DMUC4064A
A	TROP2	82-92%	Sacituzumab govitecan
*	NaPi2b	80-93%	Upifitamab rilsodotin Lifastuzumab Vedotin
	TF	23-100%	Tisotumab Vedotin
	CDH6	70%	Praluzatamab ravtansine

anti-Folate R1 mirvetuximab soravtansine

How to treat platinum-resistant patients?

NEW AGENTS KNOCKING ON THE DOOR

- MIRVETUXIMAB SORAVTANSINE
 - Folate receptor-α (FRα) is a cell surface protein overexpressed in 70-100% of EOC
 - MS is an antibody—drug conjugate that targets FRα to deliver the microtubule-disrupting agent DM4 directly to the tumor

Phase III MIRASOL (GOG 3045/ENGOT-ov55) Study: Mirvetuximab Soravtansine vs. Investigator's Choice of Chemotherapy in Platinum-Resistant, Advanced High-Grade Epithelial Ovarian, Primary Peritoneal or Fallopian Tube Cancers with High Folate Receptor-Alpha (FR α) Expression

Kathleen N. Moore¹, Antoine Angelergues², Gottfried E. Konecny³, Susana Banerjee⁴, Sandro Pignata⁵, Nicoletta Colombo⁶, John Moroney⁷, Casey Cosgrove⁸, Jung-Yun Lee⁹, Andrzej Roszak¹⁰, Shani Breuer¹¹, Jacqueline Tromp¹², Diana Bello Roufai¹³, Lucy Gilbert¹⁴, Rowan Miller¹⁵, Tashanna Myers¹⁶, Yuemei Wang¹⁷, Anna Berkenblit¹⁷, Domenica Lorusso¹⁸, Toon Van Gorp¹⁹

¹Stephenson Cancer Center University of Oklahoma College of Medicine, Oklahoma City, OK, USA; ²Groupe Hospitalier Diaconesses Croix Saint Simon, Paris, France; ³UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴The Royal Marsden NHS Foundation Trust - Royal Marsden Hospital, London, UK; ⁵Istituto Nazionale Tumori- G. Pascale, Naples, Italy; ⁶European Institute of Oncology IRCCS, Milan, Italy and University of Milan-Bicocca, Milan, Italy; ¹The University of Chicago, Chicago, IL, USA; ⁶The Ohio State University, Columbus, OH, USA; ⁰Severance Hospital, Seoul, South Korea; ¹¹⁰Wielkopolskie Centrum Onkologii, Oranan, Poland; ¹¹¹Hadassah Ein Kerem – Sharett, Jerusalem, Israel; ¹²Amsterdam UMC, Amsterdam, The Netherlands; ¹³Hopital Rene Huguenin, Institut Curie, Saint-Cloud, France; ¹⁴McGill University Health Centre, Montreal, Canada; ¹⁵University College London Hospital, London, UK; ¹⁶Baystate Medical Center, Springfield, MA, USA; ¹¹ ImmunoGen, Inc., Waltham, MA, USA; ¹³Fondazione Policlinico Universitario A. Gemelli, IRCCS and Catholic University of Sacred Heart, Rome, Italy; ¹¹University Hospital Leuven Leuven Cancer Institute, Leuven, Belgium

MIRASOL (NCT04209855) – Study Design^{1,2}

An open-label, phase 3 randomized trial of MIRV vs investigator's choice chemotherapy in patients with FRα-high platinum-resistant ovarian cancer

AlBW, adjusted ideal body weight; BEV; bevacizumab; BICR, blinded independent central review; BRCA, BReast CAncer gene; CA-125, cancer antigen 125; chemo, chemotherapy; DOR, duration of response; FRα, folate receptor alpha; IC, investigator's choice; IHC, immunohistochemistry; INV, investigator, MIRV, mirvetuximab soravlansine; ORR, objective response rate; OS, overall survival; PARPi, poly (ADP-ribose) polymerase inhibitors; PFI, platinum-free interval; PFS, progression-free survival; PFS2, time from randomization until second disease progression; PLD, pegylated liposomal doxorubicin; PROs, patient-reported outcomes; PS2+, positive staining intensity ≥2; Q3W, every 3 weeks. *PROs will be measured using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire, 28-item Ovarian Cancer Module (OV28) study instrument. *Covnecological Cancer InterGroup (GCIG) criteria.

ClinicalTrials gov identifier: NCT04209855. Updated June 16, 2022. Accessed October 5, 2022. https://clinicaltrials.gov/ct2/show/NCT04209855
 Moore K, et al. Presented at: 2020 American Society of Clinical Oncology Annual Meeting: May 29-31, 2020; Virtual. Abstract TPS6103.

Primary Endpoint: Progression-Free Survival by Investigator

Data cutoff: March 6, 2023

MIRV, mirvetuximab soravtansine; IC Chemo, investigator's choice chemotherapy; mPFS, median progression-free survival; CI, confidence interval; HR, hazard ratio.

Overall Survival

Data cutoff: March 6, 2023; median follow-up time: 13.11 months

MIRV, mirvetuximab soravtansine; IC Chemo, investigator's choice chemotherapy; mOS, median overall survival; CI, confidence interval; HR, hazard ratio.

^aOverall survival is statistically significant based on pre-specified boundary p-value at interim analysis = 0.01313

Differentiated Safety Profile: Treatment-Emergent Adverse Events

Data cutoff: March 6, 2023

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.

Pac n=82 (39%), PLD n=76 (37%), Topo n=49 (24%). Grade 2+ peripheral neuropathy events were observed in 12% and 16% of patients that received MIRV or paclitaxel, respectively.

A	Target	Expression	Examples
	FRα	67-100%	Mirvetuximab STRO-02 MORAB-B-202
*	Mesothelin	55-100%	Anetumab
	HER-2	2-66%	Trastuzumab-Dx TDM1
	MUC16/CA12 5	70-90%	DMUC5754A DMUC4064A
A	TROP2	82-92%	Sacituzumab govitecan
*	NaPi2b	80-93%	Upifitamab rilsodotin Lifastuzumab Vedotin
	TF	23-100%	Tisotumab Vedotin
	CDH6	70%	Praluzatamab ravtansine

anti-Folate R1 mirvetuximab soravtansine

A	Target	Expression	Examples
*	FRa	67-100%	Mirvetuximab STRO-02 MORAB-B-202
\star	Mesothelin	55-100%	Anetumab
	HER-2	2-66%	Trastuzumab-Dx TDM1
	MUC16/CA12 5	70-90%	DMUC5754A DMUC4064A
E	TOP2	82-92%	Sacituzumab govitecan
O.	Hole	80-93%	Upifitamab rilsodotin Lifastuzumab Vedotin
		23-100%	Tisotumab Vedotin
	CDH6	70%	Praluzatamab ravtansine

anti-Folate R1 mirvetuximab soravtansine

IMMUNOTHERAPY

results are not presented

DUO-O study design

Dosing and schedule: bevacizumab (15 mg/kg IV q3w); durvalumab (1120 mg IV q3w); olaparib (300 mg po bid); chemotherapy: paclitaxel 175 mg/m² IV q3w and carboplatin at AUC5 or AUC6 IV q3w. PFS interim analysis DCO: December 5, 2022. *With or without bevacizumab according to local practice; ¹Cycles 2–6; ‡Genomic instability score ≥42 assessed prospectively by Myriad MyChoice CDx assay.

AUC, area under the curve; bev, bevacizumab; bid, twice daily; CTx, chemotherapy; DCO, data cutoff; durva, durvalumab; FIGO, International Federation of Gynecology and Obstetrics; HRD, homologous recombination deficiency; ITT, intent-to-treat; IV. intravenous: ola, olaparib: OS, overall survival: PC, paclitaxel/carboplatin; po, by mouth; q3w, every 3 weeks; R, randomization; RECIST, Response Evaluation Criteria for Solid Tumors,

Treatment continued until disease progression, study treatment was complete or other discontinuation criteria were met

IMMUNOTHERAPY

Patients at risk

Arm 3

143

140

138

135

PFS: Non-tBRCAm HRD-positive population

Arm 3 vs Arm 1 PC + bev + durva + ola N=140 Median follow-up,* months 28.8 25.6 100 Events, n (%) 86 (60) 49 (35) 90 Median PFS.† months 37.3[‡] 23.0 Patients free from disease progression or death (%) 80 HR (95% CI) 0.49 70 vs Arm 1 (0.34-0.69)§ P<0.0001 60 50 PC + bev + durva + ola 40 30 20 PC + bev 10 0 21 27 33 39 42 15 18 24 30

Time from randomization (months)

*In censored patients; †Medians and rates were estimated by KM method; †Median PFS in Arm 3 unstable; \$HR and CI were estimated from a stratified Cox proportional hazards model. P value from a stratified log rank text. Model stratified by timing and outcome of cytoreductive surgery; †24-month PFS rates unstable CI, confidence interval; HR, hazard ratio; KM, Kaplan–Meier.

13

17

39

32

116

120

116

107

126

131

IMMUNOTHERAPY

Subgroup analysis of PFS by HRD status

	Arm 1 PC + bev N=143	Arm 3 PC + bev + durva + ola N=140
Events, n (%)	86 (60)	49 (35)
Median PFS, months†	23.0	37.3 [‡]
HR (95% CI) vs Arm 1		0.51 (0.36-0.72)§

	Arm 1 PC + bev N=216	Arm 3 PC + bev + durva + ola N=211
Events, n (%)	157 (73)	127 (60)
Median PFS, months†	17.4	20.9
HR (95% CI) vs Arm 1		0.68 (0.54-0.86)§

*24-month PFS rates unstable; †Medians and rates were estimated by KM method; †Median PFS in HRD-positive subgroup Arm 3 and Arm 2 unstable; §HR and CI were estimated from an unstratified Cox proportional hazards model.

FUTURE

PARPi now in First line: What's next?

- Targeting glucocorticoid receptor
- Targeting Cell Cycle Regulation and DNA Repair
- Improved drug delivery system : ADC
- Targeting PARPi resistance
- Enhancing PARPi activity (inducing HRD)
- New Generation PARPi
- Targeting the tumor microenvironment
 - Fusion proteins
 - Novel immunotherapy approaches

Take home messages

- PARP inhibitors are a major addition to our treatment armamentarium.
- Our best selective biomarkers remain platinum-sensitivity and DDR genotypes.
- There may be a curative benefit for a subset of patients. Further data maturation is required.
- PostPARPi progression directions are needed.
- MIRV a new standard of care or patients with FR α -positive PROC.