

SIMPOSIO - SYMPOSIUM | 2024 BIOPSIA LÍQUIDA - LIQUID BIOPSY

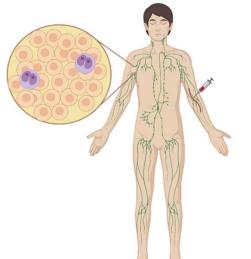
EL CAMINO A LA ONCOLOGÍA DE PRECISIÓN · THE WAY TO PRECISION MEDICINE

25, 26 Y 27 DE ENERO - JANUARY 25th, 26th and 27th

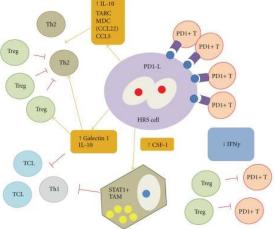
GENOMIC CHARACTERIZATION OF HODGKIN LYMPHOMA AND ITS INTEGRATION INTO PERSONALIZED CARE USING LIQUID BIOPSY

DR IÑAKI COMINO-MÉNDEZ DR ANTONIO RUEDA-DOMÍNGUEZ

#SimposioBiopsiaLiquida www.simposiobiopsialiquida.com Organizado por: Organized by:


INTRODUCTION: HODGKIN LYMPHOMA

- →Rare malignant disease (0.4% of all neoplasms)
- →90% of HL are classical HL (cHL)
- → Primarily affects young people
- →Cure rate of 80%
- → High mortality rate due to overtreatment
- ❖ Primary cause of death caused by treatments side effects: secondary tumours and cardiovascular events → treatment modulation based on risk of lymphoma-related death.
- ❖ Main characteristic: It features giant malignant cells, typically multinucleated, derived from B lymphocytes. They make up approximately 1% of the tumour mass → Hodgkin Reed-Sternberg (HRS).


Weniger MA, Küppers R. Leukemia. 2021.

Connors JM. Nature reviews Disease primers. 2020.

Montes-Moreno, S. Advances in hematology. 2011.

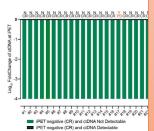
INTRODUCTION: HODGKIN LYMPHOMA AND LIQUID BIOPSY

→ Targeted panel CAPP-SEQ to detect ctDNA

ORIGINAL PAPER

BJHaem

Baseline circulating tumour DNA and interim PET predict response in relapsed/refractory classical Hodgkin lymphoma



→Targeted panel CAPP-SEQ to characterize HRS cells and to detect ctDNA

LYMPHOID NEOPLASIA

Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma

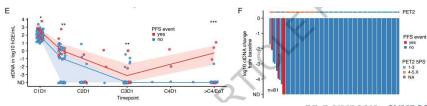
Valeria Spina, 1-* Alessio Bruscaggin, 1-* Annarosa Cuccaro, 2 Maurizio Martini, 3 Martina Di Trani, 4 Gabriela Forestieri, 1 Martina Manzoni, 5
Adalgisa Condoluci, 3- Alberto Arribas, 1 Lodovico Terzi-Di-Bergamo, 5 Silvia Laura Locatelli, * Elisa Cupelli; * Luca Cerani, * Alden A. Moccia, 4
Anastasios Stathis, 4 Luca Nassa; 7 Clara Deambrogi, 7 Fary Dio; 7 Francesca Guidetti, 3 Alessandra Cocomaza; 3 Salvatore Annunziata, 4
Vittoria Rufini, * Alessandro Giordano, * Antonino Neri, 5-* Renzo Boldorini, * 0 Bernhard Gerber, * Francesco Bertoni, 1-* Michele Ghielmini, *
Georg Stüssi, * Armando Santoro, * 1-* Franco Cavalli, * 6 Ernanuele Zucca, * Luigi Maria Larocca, * 2 Gianluca Gaidano, * 5 Stefan Hohaus, * 1
Carmelo Carlo-Stella, * 1-* 1 and Davield Rossi. * 1

- → Improve HRS cell isolation approaches
- → Fixed NGS panels: No extensive WGS mutational profile determination in HRS cells
- → Need for improving sensitivity in detecting ctDNA

d cell sorting

her mutational

seq) to detect


ps://doi.org/10.1038/s41586-023-06903-x

Med

CeliPress

Clinical and Translational Article

In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin's lymphoma and facilitates ultrasensitive residual disease detection Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling

SIMPOSIO · SYMPOSIUM | 2024 BIOPSIA LÍQUIDA · LIQUID BIOPSY EL CAMINO A LA ONCOLOGÍA DE PRECISIÓN - THE WAY TO PRECISION MEDICINE

INTRODUCTION: HODGKIN LYMPHOMA AND LIQUID BIOPSY

Jesús García-Velasco

Esperanza López

→ In-depth characterization of the genomics of HRS cells, coupled with blood biomarker detection, to monitor disease response in cHL patients.

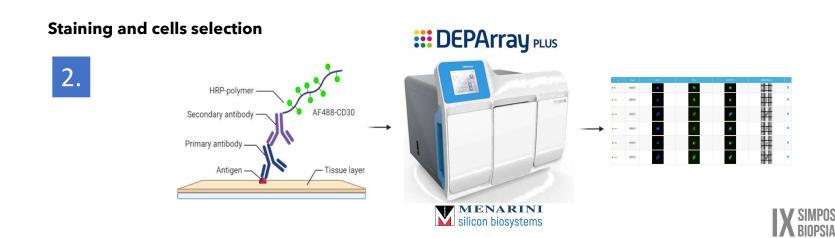
STUDY OBJECTIVES

- Characterization of the mutational profile of isolated Hodgkin-Reed Sternberg cells by image cytometry: DEPArray PLUS system Menarini.
 - In-depth genomic characterization: CNVs, Structural Variants, SNVs, Indels
- Monitoring treatment response in these patients through the implementation of patient-specific mutation panels in liquid biopsy.

TUMOUR GENOMIC INFORMATION

ctDNA MONITORING

CLINICAL DATA



IMPROVE CLINICAL MANAGEMENT

HRS cells isolation: Tissue dissociation from FFPE biopsy and cell selection

DEPArray[™] PLUS system: Technology overview

The best-in-class digital single cell technology just got even better

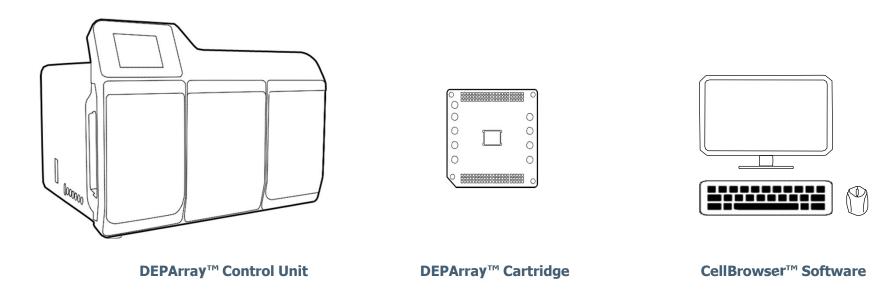
- Improved workflow automation
- Faster digital cell sorting
- Increased flexibility
- 9 fluorescent channels

9 Fluo + Brightfield						
Ex Filter	Em Filter	CellBrowser™				
350-404 nm	447-460 nm	VIOLET				
	<u>509-522 nm</u>	<u>VIO-FITC</u>				
	<u>603-627 nm</u>	VIO-ORANGE				
426-450 nm	690-730	PerCP-Cy5.5				
453.5-486.5 nm	509-522 nm	FITC				
541-556 nm	572-594	PE				
	<u>754-816 nm</u>	PE-FAR RED				
600-630 nm	661.5-690.5	APC				
	690-730	APC-Cy5.5				
	<u>754-816 nm</u>	APC-FAR RED				

2 NEW

3 NEW

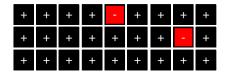
4

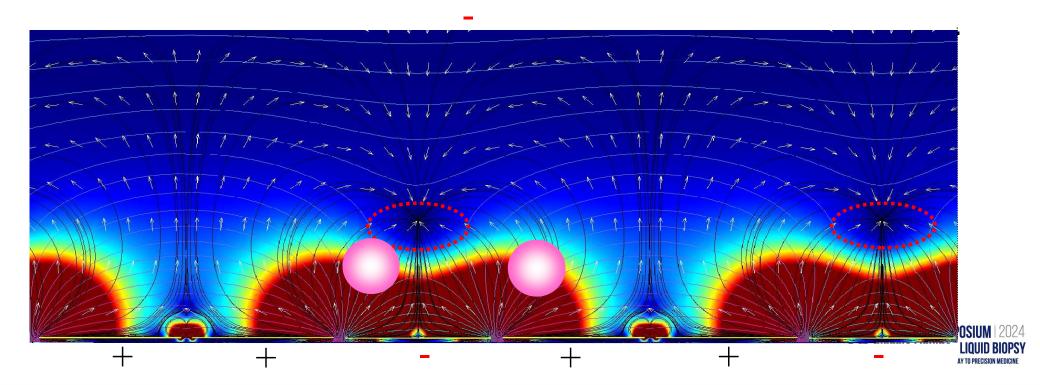

7 NEW

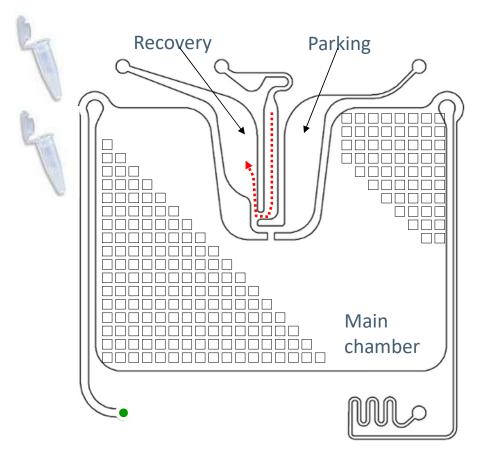
4' NEW

9 NEW

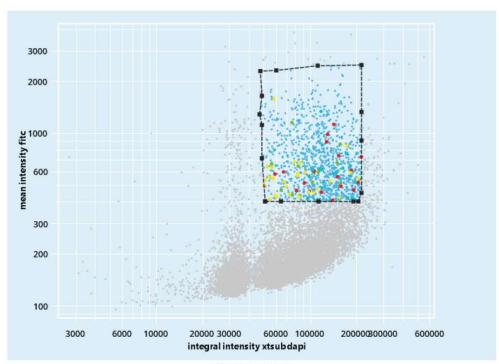
DEPArray[™] PLUS system: Technology overview




The DEPArray™ system is a semiconductor based technology for **precise isolation of pure single cells.**

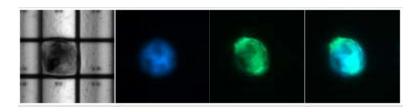

DEPArray[™] PLUS system: Technology overview

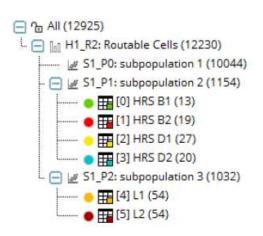
300,000 microchip controlled electrodes to create DEP cages Changing polarity of each electrode allows cells to be moved from cage to cage over the microchip.


DEPArray[™] PLUS system: Technology overview

- 1. Inject, trap and image all cells
- 2. Move all cells of interest into Parking chamber
- 3. Move separately to Recovery chamber and flush

DEPArray[™] PLUS system: Scan settings and HRS cell selection

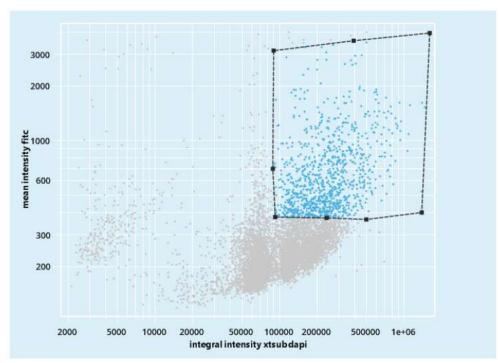



S1_P1-subpopulation 2

Mean intensity fitc: Minimum ≈ 400; Maximum ≈ 3000

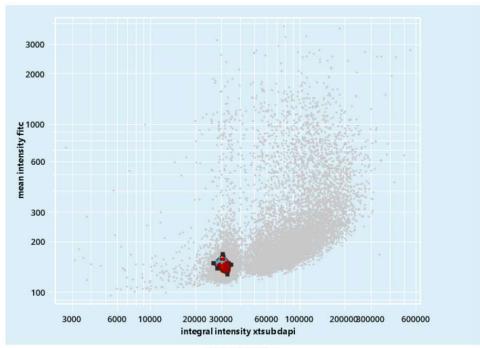
Integral intensity xtsubdapi: Minimum ≈ 100000; Maximum ≈ 1000000

Scan settings	Chip scan			Image analysis					
	Fluorophore	Exposure (ms)	Carnera Gain	Lamp intensity (%)	Offset (um)	HDR	Shading Correction	Detection	Duplicate removal
CHIP SCAN 1									
DAPI	dapi	40	1X	20%	36			Bright	
BRIGHTFIELD		2	1X	5%	25		\checkmark	Faint	
FITC	af488	200	2X	100%	30		$\overline{\mathbf{z}}$	Disable	



DEPArrayTM PLUS system: Scan settings and HRS cell selection

Isolation of HRS cells based on size and staining intensity for CD30 (AF488):


Mean intensity fitc: Minimum ≈ 400; Maximum ≈ 3000

Integral intensity xtsubdapi: Minimum ≈ 100000; Maximum ≈ 1000000

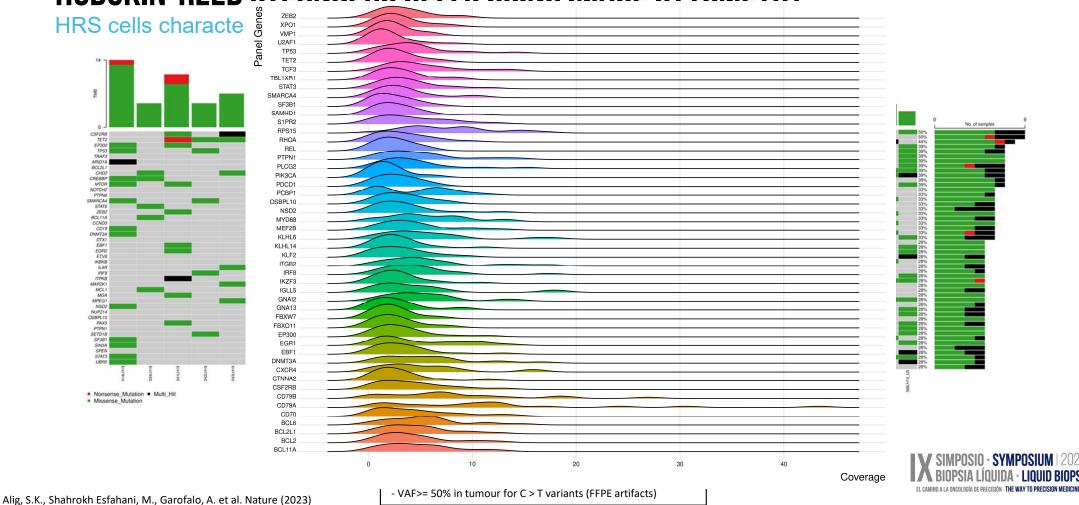
DEPArray[™] PLUS system: Scan settings and HRS cell selection

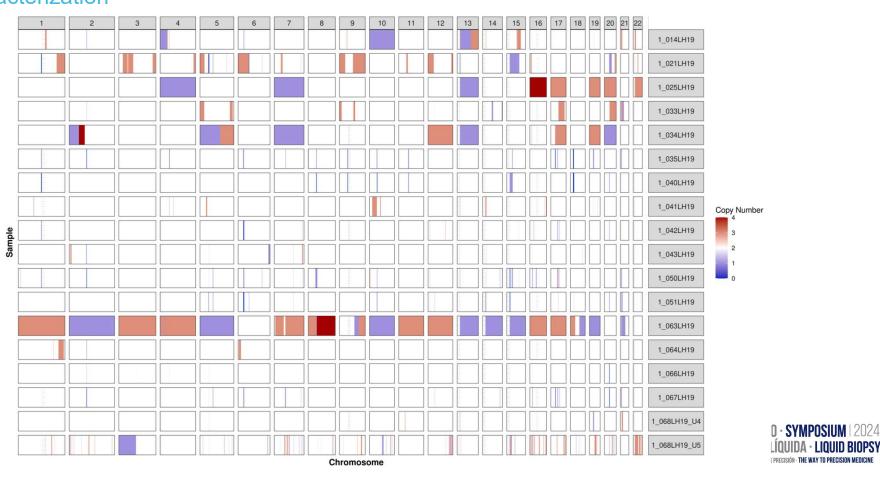
Isolation of lymphocytes based on circularity, small size and no signal for CD30

51_P2-subpopulation 3

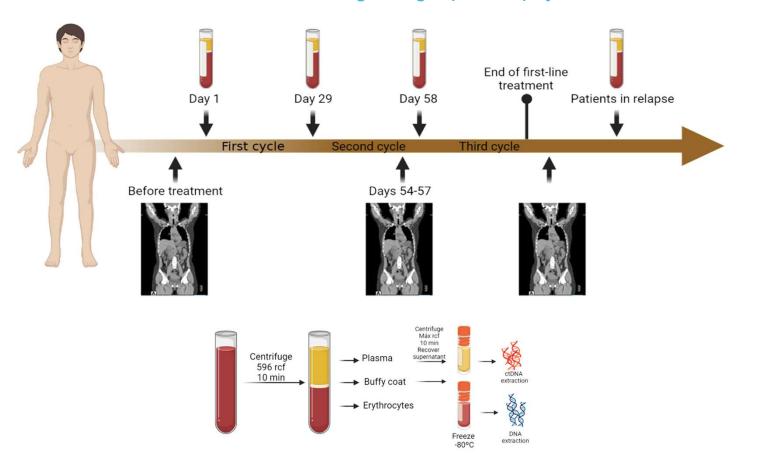
Mean intensity fitc: Minimum ≈ 130; Maximum ≈ 180

Integral intensity xtsubdapi: Minimum ≈ 25000; Maximum ≈ 35000

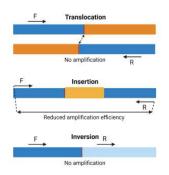

DEPArrayTM PLUS system: Scan settings and HRS cell selection



Cell parking



HRS cells characterization



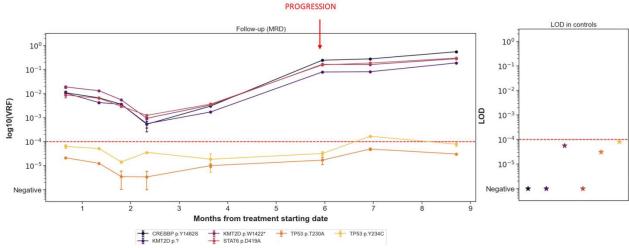
Personalized treatment monitoring using liquid biopsy

Blood Biomarkers:

- Structural variations

- Mid-size indels
- SNVs

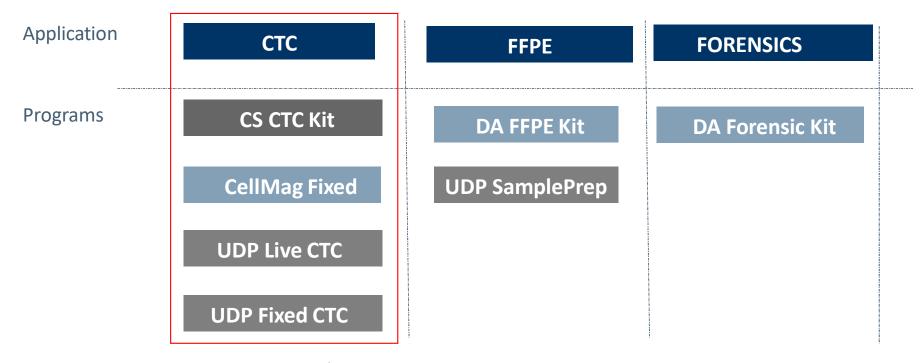
Personalized treatment monitoring using liquid biopsy



Article Published: 03 January 2023

LYMPHOMA

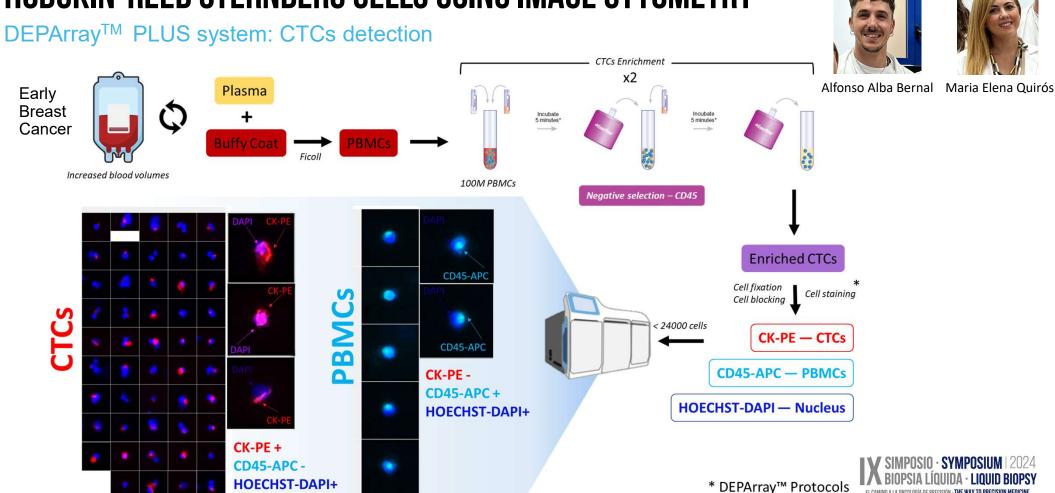
Real-life disease monitoring in follicular lymphoma patients using liquid biopsy ultra-deep sequencing and PET/CT


Ana Jiménez-Ubieto M., María Poza. Alejandro Martin-Muñoz, Yanira Ruiz-Heredia, Sara Dorado, Gloria Figaredo, Juan Manuel Rosa-Rosa, Antonia Rodriguez, Carmen Barcena, Laura Parrilla Navamuel, Jaime Carrillo, Ricardo Sanchez, Laura Rufian, Alexandra Juárez, Margarita Rodriguez, Chongwu Wang, Paula de Toledo, Carlos Grande, Manuela Mollejo, Luis-Felipe Casado, María Calbacho, Tycho Baumann, Inmaculada Rapado, Miguel Gallardo, Pilar Sarandeses, Rosa Ayala, Joaquín Martínez-López & Santiago Barrio

DEPArrayTM PLUS system: CTCs detection

3 different applications available

CTC / FFPE applications available in 5 and 9 colours



METHODOLOGY: CHARACTERIZATION OF THE MUTATIONAL PROFILE OF ISOLATED

HODGKIN-REED STERNBERG CELLS USING IMAGE CYTOMETRY

CONCLUSIONS

- 1. The **DEPArray PLUS** system proves to be an exceptional platform for isolating cells at the single-cell level.
- 2. It facilitates the isolation of various cell types through immunofluorescence, offering up to 9 channels.
- 3. Successful isolation of HRS cells enabled the generation of WGS libraries in all 16 tissues examined.
- 4. The acquired sequencing data provided insights into CNVs, SNVs, and indels.
- 5. Ongoing efforts are directed towards identifying structural variants
- 6. Collaboration with Altum Sequencing is underway to develop ultrasensitive, patient-specific panels. These panels aim to track ctDNA and monitor treatment responses.
- 7. Furthermore, the **DEPArray PLUS** system has been seamlessly integrated into other projects, including the isolation of CTCs from high-volume blood samples.

THANK YOU!

SIMPOSIO - SYMPOSIUM | 2024 BIOPSIA LÍQUIDA - LIQUID BIOPSY

EL CAMINO A LA ONCOLOGÍA DE PRECISIÓN · THE WAY TO PRECISION MEDICINE

