

SIMPOSIO - SYMPOSIUM | 2024 BIOPSIA LÍQUIDA - LIQUID BIOPSY

EL CAMINO A LA ONCOLOGÍA DE PRECISIÓN · THE WAY TO PRECISION MEDICINE

25, 26 Y 27 DE ENERO · JANUARY 25th, 26th and 27th

LIQUID BIOPSY APPROACHES FOR THE CLINICAL MANAGEMENT OF LUNG CANCER. RNA-BASED TESTING

MIGUEL A. MOLINA-VILA

LABORATORY OF ONCOLOGY/PANGAEA ONCOLOGY

HOSPITAL UNIVERSITARIO QUIRÓN DEXEUS

BARCELONA, SPAIN

#SimposioBiopsiaLiquida www.simposiobiopsialiquida.com Organizado por: Organized by:

SIMPOSIO · SYMPOSIUM | 2024 Biopsia Líquida · Liquid Biopsy

EL CAMINO A LA ONCOLOGÍA DE PRECISIÓN - THE WAY TO PRECISION MEDICINE

RNA in liquid biopsies

- -Liquid biopsies are revolutionizing cancer testing as a noninvasive method for detection and monitorization of malignancies, complementary or, in some cases, alternative to tumor tissue biopsies.
- -Tumor RNA (tRNA) can be isolated from several sources in liquid biopsies
- --CTCs
- --Exosomes
- --Platelets ("tumor educated", TEPs)
- --Soluble fraction (ctRNA)

RNA in liquid biopsies (II)

- -Tumor RNA (tRNA) purified from liquid biopsies can be used for two main applications
- --Detection of clinically relevant alterations, including splicing (i.e. $MET\Delta 14$ or EGFRVIII) and fusion variants (ALK, ROS1, RET, NTRK1-3, etc)
- --Development of gene expression signatures with diagnostic, prognostic and predictive value
- -Clinically relevant alterations must be detected on mRNA; while signatures can be based on all types of RNA

Trends in Pharmacological Sciences

Clinically relevant gene fusions and splicing variants in lung cancer

Approved biomarkers	ESMO Guidelines (2020)	NCCN Guidelines [©] (2022) ^a	CAP/IASLC/AMP Guidelines (2018)	ASCO Guidelines (2014)	Pan-Asian Guidelines (2019)
EGFR					
ALK					
ROS1					
BRAF					
NTRK			•		
PD-L1					

Emerging biomarkers	ESMO Guidelines (2020)	NCCN Guidelines® (2022)³	CAP/IASLC/AMP Guidelines (2018)	ASCO Guidelines (2014)	Pan-Asian Guidelines (2019)
KRASb					
MET					
RET⁵					
RBB2/HER2					
TMB°					

- -The ESMO guidelines recommend testing for *ALK*, *ROS1*, *NTRK1* and *RET* fusions, together with *METex14* splicing variant
- -Multiplex techniques are needed
- -In patients with insufficient or no tissue biopsy available, liquid biopsy is the only alternative
- -However, testing for fusions/splicing variants in blood is not incorporated in the routine clinical practice

NGS for detection of gene fusions and splicing variants: DNA vs. RNA

-Several studies indicate that multiplex RNA-based techniques are to be preferred over DNA-based NGS for the identification of gene fusions and splicing variants

-In FFPE samples, RNA based panels are widely used for fusion detection (i.e., TruSight™ RNA Fusion Panel, AmpliSeq™ RNA Fusion Lung Cancer Panel, nCounter panels)

-However (suprisingly!!), RNA-based techniques are rarely used to detect fusions and splicing variants in liquid biopsies

Davies and Aisner, CCR, 2019

nCounter in liquid biopsies: our experience

Target	
GAPDH	
MRPL19	
PSMC4	
ML4-ALKE13:A20	
ML4-ALKE18:A20	
EML4-ALKE2:A20	
ML4-ALKE20:A20	
EML4-ALKE6:A20	
KIF5B-ALK_K17:A20	
FG-ALKT5:A20	
CCDC6-RET_C1:R12	
KIF5B-RET_K15:R11	
KIF5B-RET_K16:R12	
KIF5B-RET_K22:R12	
KIF5B-RET_K23:R12	
KIF5B-RET_K24:R11	
(IF5B-RET_K24:R8	
KIF5B_K15-Common	
(IF5B_K24-Common	

-29 Specific probes

SDC4-ROS1_S2:R32
SDC4-ROS1_S4:R34
SLC34A2_S4:ROS1-Common
SLC34A2-ROS1_S13del2046:R32
SLC34A2-ROS1_S4:R32
EZR-ROS1_E10:R34
GOPC-ROS1_G4:R36
GOPC-ROS1_G7:R35
TPM3-ROS1_T8:R35
LRIG3-ROS1_L16:R35
CD74-ROS1_C6:R32
MET_e13_14
MET_e13_15

BLOOD EXTRACTION PLASMA PROCES

ARN PURIFICATION

PREAMPLIFICATION INTEREST REGION

HIBRIDATION

NCOUNTER TECNOLOGY

COUNT SYSTEM

nCounter in liquid biopsies: our experience

nCounter in liquid biopsies: our experience

Table 3. Concordance of ALK, ROS1, RET, and METΔex14 detection in circulating-free RNA (cfRNA) liquid biopsy vs. tissue by nCounter in absolute number of samples.

Genes	ALK	ROS1	RET	METΔex14	Overall
No. concordant samples	52	53	51	56	212
No. discordant samples	4	3	5	0	12
Diagnostic sensitivity	71.4%	67.6%	58.3%	100%	70%
Stro-Admitted des ver reichten i erweindoord voordaal konnert.	(CI = 45.3 - 88.3)	(CI = 35.8 - 87.9)	(C1 = 30.4 - 86.2)	(CI = 56.6-100)	(CI = 54.6-81.9)
Diagnostic specificity	100%	100%	100%	100%	100%
	(CI = 91.6-100)	(CI = 92.4-100)	(CI = 91.9-100)	(CI = 92.6-100)	(CI = 97.8-100)
Concordance	92.85%	94.64%	91.07%	100%	94.41%
Cohen's K	0.79	0.77	0.69	1	0.8
	(CI = 0.53-1.04)	(CI = 0.51-1.03)	(CI = 0.44 - 0.94)	(CI = 0.74-1.27)	(CI = 0.66-0.92)

Comparison of techniques for fusion detection in liquid biopsy

Characteristics	NanoString Technologies	FoundationOne Medicine	Resolution Bioscience	Guardant Health	ThermoFisher Scientific	ThermoFisher Scientific	NeoGenomics	Roche	RT-PCR
Assay	Custom panel	FoundationOne Liquid CDx	Resolution ctDx Lung	Guardant360 CDx assay	Oncomine Lung cfTNA assay	Ion Ampliseq RNA Fusion Lung Cancer panel	InVisionFirst- Lung	Cobas 4800 system	PCR Taqman assays (Life Technologies)
Input requirements	1 tube of whole blood	two 10-mL tubes of whole blood	two 10-mL tubes of whole blood	two 10-mL tubes of whole blood	1 tube of whole blood	1mL	two 10-mL tubes of whole blood	8 mL of Whole blood	6 mL of whole blood
Type of Sample	cfRNA	cfDNA	cfDNA	cfDNA	cfDNA/cfRNA	cfRNA	cfDNA	cfRNA	cfRNA
Simultaneous detection of SNV/CNV/fusions	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No
Test turnaround time	2 days	15 days	9 days	7 days	4 days	not reported	5 days	1 day	1 day
Reportable range	0.1 - 0.01%	0.125% - 0.5%	1.4%-8%	0.05 - 0.20%	0.02%-2.2% *	not reported	0.06%	not reported	not reported
Sensitivity	70% (95% CI= 55 - 82)	Datasheet: ALK 92.9% Published: 68.4- 100%	81% for fusions	Datasheet: ALK, RET, ROSI 83.0%-100% Published:18-44%	8% - 100% *	ALK (n=9) 64%	67% for ALK and ROS1	33.33% (95% CI: 17.3– 52.8%)	(n=32) 21.0% in plasma (n= 67) 65.0% in platelets
Specificity	100% (95% CI= 98- 100)	100% for ALK RET and ROS1 not reported	Not reported	Fusions (n=37) 100% METAex14 (n=3) 100%	100%*	100% **	100%	100% (95% CI: 85.8– 100%)	100% plasma and platelets
Genes in the panel	ALK, RET, ROS1 and MET∆ex14	ALK, RET, ROS1 and MET∆ex14	ALK, RET, ROS1 and MET∆ex14	ALK, RET, ROS1 and METΔex14	ALK, RET, ROS1 and MET∆ex14	ALK	ALK, RET, ROS1 and MET∆ex14	ALK and RET	ALK
Study (author, year, reference)	This manuscript	(3)	(4)	(5)(6, 7)	(8)	(9)	(10)	(11)	(12)

^{*}No clinical research samples were available to verify the analytical sensitivity.

^{**} Data from extracellular vesicle RNA (EV-RNA).

RNA signatures in liquid biopsies

- -Types of signatures:
- --Diagnostic
- --Prognostic
- --Predictive
- -Types of RNA:
- --mRNA
- --IncRNA
- --miRNA
- --circRNA
- -Source of RNA
- --CTCs
- --Circulating RNA (ctRNA)
- --Platelet-derived (TEP RNA)
- --Exosomes (EV-RNA)
- -Several examples in the literature, but not yet in clinical use

Pulmonary nodules

- Last year in Spain 29,638 new cases of the lung cancers diagnosed.
- 80% were diagnosed at advanced stages (IIIB-IV), and have a dismal prognosis, with a median overall survival that does not exceed two years.
- The remaining 20% were diagnosed at early stage (I-IIIA), could undergo surgery and have the potential to be cured.
- Imaging technologies often detect pulmonary nodules of unknown significance.
- In these cases, patients are kept under observation for months (the tumor may grow) or may undergo bronchoscopy (in some cases unnecessary). A guided bronchoscope is capable of sampling 75% of lung nodules larger than two centimeters in size (SEPAR 2018).
- A diagnostic test that could help the clinician to differentiate between benign and malignant lesions would be useful in this setting.

Our experience. Objectives

"The best protection is early detection"

Objective

To develop an RNA liquid biopsy-based genetic signature to help the clinician to discriminate benign from malignant nodules in patients with suspicion of lung cancer

Our experience. Methods

SAMPLE PROCESSING <24 HOURS

MORRODOM PROPROPROPRO paradorda paramoran

Preamplification

nCOUNTER FLEX TECHNOLOGY 48-72 HOURS

- Purification and immobilization Barcode counting

Hybridization

DATA ANALYSIS

Differential expression and ML analysis

RNA purification

- 1 EDTA tube
- Storage: 2-8ºC for 24 hours

For mRNA signature:

The PanCancer IO 360[™] panel is a 770-plex gene expression panel cancer-related inmune responses, micro-enviroment and the tumor.

Our experience. Enrolled patients (n=295)

- 149 patients with tumor nodules
- 61 individuals with non tumor lung nodules
- 85 healthy donors

CANCER (149) HEALTHY (146)

	Female	70	78
Gender	Male	79	63
	Unknow	0	5
	Know	144	139
Age	Unknow	5	7
	Never	36	66
	Current	40	34
Smoking status	Former	64	31
	Unknow	9	15
Madulas	Yes	149	61
Nodules	No	0	85

Differential Gene Expression

total = 750 variables

EL CAMINO A LA UNCOLOGIA DE PRECISION - THE WAY TO PRECISION MEDICINE

Our experience. Results

Model	Algorithm	n_var	n_varClin	ROC	Accuracy	Карра	F1	AccuracyPV	McnemarPV	Sens	Spec	PPV	NPV
Model_1	C50	19	4	0.89	0.81 (0.75 - 0.86)	0.60	0.84	6.80e-14	3.71e-01	0.86	0.74	0.82	0.79
Model_2	C50	20	4	0.88	0.81 (0.75 - 0.86)	0.60	0.84	6.80e-14	2.33e-01	0.87	0.73	0.82	0.80
Model_3	C50	9	4	0.88	0.80 (0.74 - 0.85)	0.59	0.83	6.12e-13	7.70e-01	0.84	0.75	0.82	0.77
Model_4	C50	7	4	0.86	0.76 (0.70 - 0.82)	0.51	0.80	3.47e-09	2.29e-01	0.83	0.67	0.78	0.74
Model_5	C50	7	4	0.86	0.76 (0.70 - 0.82)	0.51	0.80	3.47e-09	2.29e-01	0.83	0.67	0.78	0.74
Model_6	C50	3	4	0.86	0.82 (0.77 - 0.87)	0.63	0.85	2.06e-15	4.49e-02	0.90	0.72	0.81	0.84
Model_7	NN	3	4	0.86	0.79 (0.73 - 0.84)	0.56	0.83	1.36e-11	6.60e-02	0.87	0.68	0.79	0.79
Model_8	C50	3	4	0.86	0.82 (0.77 - 0.87)	0.63	0.85	2.06e-15	4.49e-02	0.90	0.72	0.81	0.84
Model_9	NN	3	4	0.86	0.79 (0.73 - 0.84)	0.56	0.83	1.36e-11	6.60e-02	0.87	0.68	0.79	0.79

11-gene signature (+clinical data)

Area under the ROC curve 0.86-0.89

Our experience. Next steps

(n = 300)

Ongoing

(n = 200)

"Take home" messages

- -In cancer patients, tumor RNA (tRNA) can be isolated from CTCs, exosomes, "tumor educated" platelets (TEPs) or plasma (ctRNA)
- -RNA isolated from liquid biopsies can be used for (i) detection of clinically relevant fusions and splicing variants, (ii) development of signatures with diagnostic, prognostic or predictive value
- -RNA-based techniques should be preferred for the identification of gene fusions and splicing variants. However, they are rarely used in liquid biopsies. Development and validation are currently under way.
- -Several signatures based on RNA isolated from liquid biopsy sources have been published, particularly for cancer detection, and more are in development.
- -However, such signatures are not (yet) in clinical use

Laboratorio de Oncología, Hospital Dexeus Cristina Aguado Silvia García-Román Mónica Garzón Marta Vives Beatriz García-Peláez Núria Jordana María José Catalán Ana Giménez-Capitán Cristina Rodríguez

Clara Mayo

Instituto Oncológico Dr. Rosell (IOR)
Rafael Rosell
Alejandro Martínez-Bueno
María González-Cao
Xavier González
Irene Moya
Andrés Aguilar
Juan José García
Francesc Pons
Florencia García-Casabal
Verónica Pereira

IGRACIAS!

Hospital Universitario General de Catalunya -

- Hospital Universitario Dexeus -

Hospital Universitario Sagrat Cor

